• Latest
  • Trending
  • All
21

Scientists create flexible biocompatible cilia that can be controlled by a magnet

August 6, 2021
Physicists confirm elusive quantum spin liquid in new study

Physicists confirm elusive quantum spin liquid in new study

June 24, 2025
A building material that lives and stores carbon

A building material that lives and stores carbon

June 20, 2025
Researchers crack the code of body’s ancient immune defense.

Researchers crack the code of body’s ancient immune defense

June 19, 2025
Nanofibers yield stronger, tougher carbon fiber composites

Nanofibers yield stronger, tougher carbon fiber composites

June 18, 2025
The New Method for Formation of Chemical Bonds

The New Method for Formation of Chemical Bonds

June 18, 2025
Nanoneedles patch for painless Cancer Biopsies

Nanoneedles patch for painless Cancer Biopsies

June 17, 2025
Practising medicine on a lifelike silicone model

Practising medicine on a lifelike silicone model

June 16, 2025
Stabilising fleeting quantum states with light

Stabilising fleeting quantum states with light

June 9, 2025
New Printable, Injectable Materials for Advanced Medical Applications

New Printable, Injectable Materials for Advanced Medical Applications

May 29, 2025
Metal fleece: material for the batteries of the future

Metal fleece: material for the batteries of the future

May 24, 2025
AI and X-ray Vision to Gain Insight into Battery Electrolyte.

AI and X-ray Vision to Gain Insight into Battery Electrolyte

May 23, 2025
Mask users can now breathe easy on two counts

Mask users can now breathe easy on two counts

May 23, 2025
  • About
  • Advertise
  • Privacy Policy
  • Terms & Conditions
  • Contact
Tuesday, June 24, 2025
  • Login
  • Register
Nanodigest
  • Home
  • Categories
    • Biological Science & Technology
    • Chemical Science & Technology
    • Material Science & Technology
    • Physical Science & Technology
    • Innovations & Education
  • NanoDigestExclusive
    AI and X-ray Vision to Gain Insight into Battery Electrolyte.

    AI and X-ray Vision to Gain Insight into Battery Electrolyte

    Emergence Quantum: a commercial quantum research 'special ops' team

    Emergence Quantum: a commercial quantum research ‘special ops’ team

    Couple satisfaction linked to fewer cognitive issues with chemo

    Ultrasound and Cilia to Clean Implanted Stents and Catheters

    Ultrasound and Cilia to Clean Implanted Stents and Catheters

    Celebrating Science

    Nobel prize for a New Way in Cancer Treatment

    Nobel prize for New Way in Cancer Treatment

    Simple to use device. Nano Digest.

    Simple to Use Device

    Nanofoam: Breakthrough in Material Design. Nano Digest.

    Nanofoam: Breakthrough in Material Design

    The Future of Solar Energy. Nano Digest.

    The Future of Solar Energy

    Trending Tags

    • 2D nanospace
    • 3D nano structures
    • Bacterial magnetic nanoparticle
    • Creation of nano technology
    • nano particles
    • Nano Technology
    • Nano Tv
    • nanomaterials
    • nanoparticles
    • Nanosciences
    • nanotubes
    • Nanowire
  • Nano TvYouTube
    Nanotechnology in Engineering – NANOENGINEERING | Nano Tv

    Nanotechnology in Engineering – NANOENGINEERING | Nano Tv

    nanotechnology, materials, graphene, nano digest, NanoTV

    Nanotechnology in Materials – GRAPHENE | Nano Tv

    Nanotechnology in Electronics - NANOELECTRONICS | Nano Tv, Nano Digest

    Nanotechnology in Electronics-NANOELECTRONICS | Nano Tv

    Nanotechnology in Medicine - NANOMEDICINE, Nano Tv, nano digest

    Nanotechnology in Medicine-NANOMEDICINE | Nano Tv

    Molecular Nanotechnology-NANOTECHNOLOGY & IMPLEMENTATIONS | Nano Tv, It deals with engineering nanoscale machines that operate on the molecular scale distinct from other areas of nanotechnology, such as nanoscale materials, nano digest

    Molecular Nanotechnology-NANOTECHNOLOGY & IMPLEMENTATIONS | Nano Tv

    What are Nanoparticles?, nano digest

    What are NANOPARTICLES?: Nano Tv

    THE ORIGIN & CHALLENGE by Richard Feynman | Nano Tv

    THE ORIGIN & CHALLENGE by Richard Feynman: Nano Tv

    Introduction, NANOTECHNOLOGY, nano digest, Nano Tv

    Introduction to NANOTECHNOLOGY | Nano Tv

  • ShopSale
No Result
View All Result
Nanodigest
No Result
View All Result
Home Material Science & Technology

Scientists create flexible biocompatible cilia that can be controlled by a magnet

by Nano Digest
August 6, 2021
in Material Science & Technology
0
21
491
SHARES
1.4k
VIEWS
Share on FacebookShare on TwitterShare on Whatsapp

Filaments made of polymer-coated iron oxide nanoparticles are obtained by exposing the material to a magnetic field under controlled temperature. The applications are myriad and include transporting substances into cells or directing fluids. Credit: researchers’ archive.

Researchers at the University of Campinas’s Chemistry Institute (IQ-UNICAMP) in the state of São Paulo, Brazil, have developed a template-free technique to fabricate cilia of different sizes that mimic biological functions and have multiple applications, from directing fluids in microchannels to loading material into a cell, for example. The highly flexible cilia are based on polymer-coated iron oxide nanoparticles, and their motion can be controlled by a magnet.

In nature, cilia are microscopic hairlike structures found in large numbers on the surface of certain cells, causing currents in the surrounding fluid or, in some protozoans and other small organisms, providing propulsion.

To fabricate the elongated nanostructures without using a template, Watson Loh and postdoctoral fellow Aline Grein-Iankovski coated particles of iron oxide (γ-Fe2O3, known as maghemite) with a layer of a polymer containing thermoresponsive phosphonic acid groups and custom-synthesized by a specialized company. The technique leverages the binding affinity of phosphonic acid groups to metal oxide surfaces, fabricating the cilia by means of temperature control and use of a magnetic field.

“The materials don’t bind at room temperature or thereabouts, and form a clump without the stimulus of a magnetic field,” Loh explained. “It’s the effect of the magnetic field that gives them the elongated shape of a cilium.”

Grein-Iankovski started with stable particles in solution and had the idea of obtaining the cilia during an attempt to aggregate the material. “I was preparing loose elongated filaments in solution and thought about changing the direction field,” she recalled. “Instead of orienting them parallel to the glass slide, I placed them in a perpendicular position and found they then tended to migrate to the surface of the glass. I realized that if I forced them to stick to the glass, I could obtain a different type of material that wouldn’t be loose: its movement would be ordered and collaborative.”

The thermoresponsive polymer binds to the surface of the nanoparticles and organizes them into elongated filaments when the mixture is heated and exposed to a magnetic field. The transition occurs at a biologically compatible temperature (around 37 °C). The resulting magnetic cilia are “remarkably flexible”, she added. By increasing the concentration of the nanoparticles, their length can be varied from 10 to 100 microns. One micron (μm) is a millionth of a meter.

“The advantage of not using a template is not being subject to the limitations of this method, such as size, for example,” Grein-Inakovski explained. “In this case, to produce very small cilia we would have to create templates with microscopic holes, which would be extremely laborious. Adjustments to coat density and cilium size would require new templates. A different template has to be used for each end-product thickness. Furthermore, using a template adds another stage to the production of cilia, which is the fabrication of the template itself.”

Grein-Iankovski is the lead author of an article published in The Journal of Physical Chemistry C on the invention, which was part of a Thematic Project supported by FAPESP, with Loh as principal investigator.

“The Thematic Project involves four groups who are investigating how molecules and particles are organized at the colloidal level, meaning at the level of very small structures. Our approach is to try to find ways of controlling these molecules so that they aggregate in response to an external stimulus, giving rise to different shapes with a range of different uses,” Loh said.

Reversibility

After the magnetic field is removed, the material remains aggregated for at least 24 hours. It then disaggregates at a speed that depends on the temperature at which it was prepared. “The higher the temperature, the more intense the effect and the longer it remains aggregated outside the magnetic field,” Grein-Iankovski said.

According to Loh, the reversibility of the material is a positive point. “In our view, being able to organize and disorganize the material, to ‘switch the system on and off’, is an advantage,” Loh said. “We can adjust the temperature, how long it remains aggregated, cilium length, and coat density. We can customize the material for many different types of use, organize it and shape it for specific purposes. I believe the potential applications are countless, from biological to physical uses, including materials science applications.”

Another major advantage, Grein-Iankovski added, is the possibility of manipulating the material externally, where the tool used to do so is not inside the system. “The filaments can be used to homogenize and move particles in a fluid microsystem, in microchannels, simply by approaching a magnet from the outside. They can be made to direct fluid in this way, for example.”

The cilia can also be used in sensors, in which the particles respond to stimuli from a molecule, or to feed microscopic living organisms. “Ultimately it’s possible to feed a microorganism or cell with loose cilia, which cross the cell membrane under certain conditions. They can be made to enter a cell, and a magnetic field is applied to manipulate their motion inside the cell,” Loh said.

For more than ten years, Loh has collaborated with Jean-François Berret at Paris Diderot University (Paris 7, France) in research on the same family of polymers to obtain elongated materials for use in the biomedical field. “We’re pursuing other partnerships to explore other possible uses of the cilia,” he said.

The scientists now plan to include a chemical additive in the nanostructures that will bind the particles chemically, obtaining cilia with a higher mechanical strength that remain functional for longer when not exposed to a magnetic field, if this is desirable.

Share196Tweet123Send
Nano Digest

Nano Digest

  • Trending
  • Comments
  • Latest

Nanotechnology in Cancer

September 10, 2020
Emergence of 2.5D Materials for Futuristic Applications

Emergence of 2.5D Materials for Futuristic Applications

June 29, 2022
New research methods developed for nano and quantum materials. Nano Digest.

New research methods developed for nano and quantum materials

February 24, 2023
Designing Gas detecting devices using nanomaterials. Nano Digest.

Designing Gas detecting devices using nanomaterials

2
3D Printing Allows Precise Light Control for Color Composition. nano Digest.

3D Printing Allows Precise Light Control for Color Composition

2

Wearable sensor monitors health, administers drugs using saliva and tears

1
Physicists confirm elusive quantum spin liquid in new study

Physicists confirm elusive quantum spin liquid in new study

June 24, 2025
A building material that lives and stores carbon

A building material that lives and stores carbon

June 20, 2025
Researchers crack the code of body’s ancient immune defense.

Researchers crack the code of body’s ancient immune defense

June 19, 2025
Nanodigest

Copyright © 2009-2022 NanoDigest.in

Navigate Site

  • About
  • Advertise
  • Privacy Policy
  • Terms & Conditions
  • Contact

Follow Us

No Result
View All Result
  • Home
  • Biological Science & Technology
  • Chemical Science & Technology
  • Material Science & Technology
  • Physical Science & Technology
  • Innovations & Education
  • NanoDigest Exclusive
  • Nano Tv
  • —————————–
  • About
  • Advertise
  • Contact
  • Privacy Policy
  • Terms & Conditions

Copyright © 2009-2022 NanoDigest.in

Welcome Back!

Sign In with Google
OR

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Sign Up with Google
OR

Fill the forms below to register

*By registering into our website, you agree to the Terms & Conditions and Privacy Policy.
All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Cookie SettingsAccept All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.