• Latest
  • Trending
  • All

New Method of Making 3D-Heterostructures

August 8, 2021
New Printable, Injectable Materials for Advanced Medical Applications

New Printable, Injectable Materials for Advanced Medical Applications

May 29, 2025
Metal fleece: material for the batteries of the future

Metal fleece: material for the batteries of the future

May 24, 2025
AI and X-ray Vision to Gain Insight into Battery Electrolyte.

AI and X-ray Vision to Gain Insight into Battery Electrolyte

May 23, 2025
Mask users can now breathe easy on two counts

Mask users can now breathe easy on two counts

May 23, 2025
Boosting Cancer Treatment.

Boosting Cancer Treatment

May 23, 2025
Emergence Quantum: a commercial quantum research 'special ops' team

Emergence Quantum: a commercial quantum research ‘special ops’ team

May 22, 2025
Sugar-coated nanotherapy dramatically improves neuron survival in Alzheimer’s model.

Sugar-coated nanotherapy improves neuron survival

May 15, 2025
Quantum simulation of chemical dynamics achieved for first time

Quantum simulation of chemical dynamics achieved for first time

May 15, 2025
The mysterious chemical world inside nanopores.

The Mysterious Chemical World Inside Nanopores

May 13, 2025
Stability solution brings unique form of carbon closer to practical application.

Stability solution brings unique form of carbon closer to practical application

May 10, 2025
It’s Hard to Get Meds to the Lungs: Breathable Algae Offers a New Path.

It’s Hard to Get Meds to the Lungs: Breathable Algae Offers a New Path

May 7, 2025
New Bayesian Method Enables Rapid Detection of Quantum Dot Charge States

New Bayesian Method Enables Rapid Detection of Quantum Dot Charge States

May 2, 2025
  • About
  • Advertise
  • Privacy Policy
  • Terms & Conditions
  • Contact
Sunday, June 1, 2025
  • Login
  • Register
Nanodigest
  • Home
  • Categories
    • Biological Science & Technology
    • Chemical Science & Technology
    • Material Science & Technology
    • Physical Science & Technology
    • Innovations & Education
  • NanoDigestExclusive
    AI and X-ray Vision to Gain Insight into Battery Electrolyte.

    AI and X-ray Vision to Gain Insight into Battery Electrolyte

    Emergence Quantum: a commercial quantum research 'special ops' team

    Emergence Quantum: a commercial quantum research ‘special ops’ team

    Couple satisfaction linked to fewer cognitive issues with chemo

    Ultrasound and Cilia to Clean Implanted Stents and Catheters

    Ultrasound and Cilia to Clean Implanted Stents and Catheters

    Celebrating Science

    Nobel prize for a New Way in Cancer Treatment

    Nobel prize for New Way in Cancer Treatment

    Simple to use device. Nano Digest.

    Simple to Use Device

    Nanofoam: Breakthrough in Material Design. Nano Digest.

    Nanofoam: Breakthrough in Material Design

    The Future of Solar Energy. Nano Digest.

    The Future of Solar Energy

    Trending Tags

    • 2D nanospace
    • 3D nano structures
    • Bacterial magnetic nanoparticle
    • Creation of nano technology
    • nano particles
    • Nano Technology
    • Nano Tv
    • nanomaterials
    • nanoparticles
    • Nanosciences
    • nanotubes
    • Nanowire
  • Nano TvYouTube
    Nanotechnology in Engineering – NANOENGINEERING | Nano Tv

    Nanotechnology in Engineering – NANOENGINEERING | Nano Tv

    nanotechnology, materials, graphene, nano digest, NanoTV

    Nanotechnology in Materials – GRAPHENE | Nano Tv

    Nanotechnology in Electronics - NANOELECTRONICS | Nano Tv, Nano Digest

    Nanotechnology in Electronics-NANOELECTRONICS | Nano Tv

    Nanotechnology in Medicine - NANOMEDICINE, Nano Tv, nano digest

    Nanotechnology in Medicine-NANOMEDICINE | Nano Tv

    Molecular Nanotechnology-NANOTECHNOLOGY & IMPLEMENTATIONS | Nano Tv, It deals with engineering nanoscale machines that operate on the molecular scale distinct from other areas of nanotechnology, such as nanoscale materials, nano digest

    Molecular Nanotechnology-NANOTECHNOLOGY & IMPLEMENTATIONS | Nano Tv

    What are Nanoparticles?, nano digest

    What are NANOPARTICLES?: Nano Tv

    THE ORIGIN & CHALLENGE by Richard Feynman | Nano Tv

    THE ORIGIN & CHALLENGE by Richard Feynman: Nano Tv

    Introduction, NANOTECHNOLOGY, nano digest, Nano Tv

    Introduction to NANOTECHNOLOGY | Nano Tv

  • ShopSale
No Result
View All Result
Nanodigest
No Result
View All Result
Home Material Science & Technology

New Method of Making 3D-Heterostructures

by Nano Digest
August 8, 2021
in Material Science & Technology
0
491
SHARES
1.4k
VIEWS
Share on FacebookShare on TwitterShare on Whatsapp

Heterostructured materials, composed of layers of dissimilar building blocks display unique electronic transport and magnetic properties that are governed by quantum interactions between their structurally different building blocks, and open new avenues for electronic and energy applications.

The technique for making them is simple, and counterintuitive—it involves smashing the pristine materials to build new ones. Called mechanochemistry, the technique uses ball milling to take apart structurally incommensurate solids— ones that don’t have matching atomic arrangements— and reassemble them into unique three dimensional (3D) “misfit” hetero assemblies. Smashing things together by milling seems like the least plausible way to achieve atomic ordering, but it’s turned out to be more successful than the scientists themselves imagined.

“A colleague of mine remarked that our ideas would be either naive or brilliant,” said Viktor Balema, Ames Laboratory Senior Scientist. “Some time ago we discovered stochastic reshuffling of layered metal dichalcogenides (TMDCs) into 3D hetero-assemblies during mechanical milling. It came as a complete surprise to us and triggered our curiosity about the possibility of atomic ordering through mechanochemical processing.”

Ames Laboratory’s technique for making heterostructured solids involves smashing the pristine materials to build new ones. Called mechanochemistry, the technique uses ball milling to take apart structurally incommensurate solids and reassemble them. Credit: U.S. Department of Energy, Ames Laboratory

Metal chalcogenides are often unique in their properties and uses. They can display remarkable electron transport behaviors ranging from complete lack of electrical conductivity to superconductivity, photo- and thermoelectric properties, mechanical pliability and, especially, the ability to form stable two-dimensional monolayers, three dimensional heterostructures, and other nano-scaled quantum materials.

“Nanostructures of misfit layered compounds (MLC) in the form of nanotubes, nanofilms (ferecrystals) and exfoliated sheets have been investigated for over a decade and offer a rich field of research and possibly also exciting applications in renewable energy, catalysis and optoelectronics, said Reshef Tenne of the Weizmann Institute of Science, Israel, and an expert in nanostructure synthesis. “One obstacle for their large-scale application is the high temperature and lengthy growth processes, which are prohibitive for large scale applications. The mechanochemical process developed by the Balema group at Ames Lab, besides being stimulating scientifically, brings us one step closer to realize down-to-earth applications for these intriguing materials.”

Typically, these complex materials, especially ones with the most unusual structures and properties, are made using two different synthetic approaches. The first, known as top-down synthesis, employs two-dimensional (2D) building blocks to assemble them, using additive manufacturing techniques. The second approach, broadly defined as bottom-up synthesis, uses stepwise chemical reactions involving pure elements or small molecules that deposit individual monolayers on top of each other. Both are painstaking and have other disadvantages such as poor scalability for use in real-world applications.

The Ames Laboratory team combined these two methods into one mechanochemical process that simultaneously exfoliates, disintegrates and recombines starting materials into new heterostructures even though their crystal structures do not fit each other well (i.e. misfit). Theoretical (DFT) calculations, supported by the results of X-ray diffraction, scanning transmission electron microscopy, Raman spectroscopy, electron transport studies and, for the first time ever, solid state nuclear magnetic resonance (NMR) experiments, explained the mechanism of the reorganization of precursor materials and the driving forces behind the formation of novel 3D heterostructures during mechanical processing.

“Solid-state NMR spectroscopy is an ideal technique for the characterization of powdered materials that are obtained from mechanochemistry,” said Aaron Rossini, Ames Laboratory scientist and professor of chemistry at Iowa State University. “By combining information obtained from solid-state NMR spectroscopy with other characterization techniques we are able to obtain a complete picture of the 3D heterostructures.”

Tags: Professor
Share196Tweet123Send
Nano Digest

Nano Digest

  • Trending
  • Comments
  • Latest

Nanotechnology in Cancer

September 10, 2020
Emergence of 2.5D Materials for Futuristic Applications

Emergence of 2.5D Materials for Futuristic Applications

June 29, 2022
New research methods developed for nano and quantum materials. Nano Digest.

New research methods developed for nano and quantum materials

February 24, 2023
Designing Gas detecting devices using nanomaterials. Nano Digest.

Designing Gas detecting devices using nanomaterials

2
3D Printing Allows Precise Light Control for Color Composition. nano Digest.

3D Printing Allows Precise Light Control for Color Composition

2

Wearable sensor monitors health, administers drugs using saliva and tears

1
New Printable, Injectable Materials for Advanced Medical Applications

New Printable, Injectable Materials for Advanced Medical Applications

May 29, 2025
Metal fleece: material for the batteries of the future

Metal fleece: material for the batteries of the future

May 24, 2025
AI and X-ray Vision to Gain Insight into Battery Electrolyte.

AI and X-ray Vision to Gain Insight into Battery Electrolyte

May 23, 2025
Nanodigest

Copyright © 2009-2022 NanoDigest.in

Navigate Site

  • About
  • Advertise
  • Privacy Policy
  • Terms & Conditions
  • Contact

Follow Us

No Result
View All Result
  • Home
  • Biological Science & Technology
  • Chemical Science & Technology
  • Material Science & Technology
  • Physical Science & Technology
  • Innovations & Education
  • NanoDigest Exclusive
  • Nano Tv
  • —————————–
  • About
  • Advertise
  • Contact
  • Privacy Policy
  • Terms & Conditions

Copyright © 2009-2022 NanoDigest.in

Welcome Back!

Sign In with Google
OR

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Sign Up with Google
OR

Fill the forms below to register

*By registering into our website, you agree to the Terms & Conditions and Privacy Policy.
All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Cookie SettingsAccept All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.