• Latest
  • Trending
  • All
19

Silicon Anode Nanostructure Generates New Potential for Lithium-Ion Batteries

August 6, 2021
Sugar-coated nanotherapy dramatically improves neuron survival in Alzheimer’s model.

Sugar-coated nanotherapy improves neuron survival

May 15, 2025
Quantum simulation of chemical dynamics achieved for first time

Quantum simulation of chemical dynamics achieved for first time

May 15, 2025
The mysterious chemical world inside nanopores.

The Mysterious Chemical World Inside Nanopores

May 13, 2025
Stability solution brings unique form of carbon closer to practical application.

Stability solution brings unique form of carbon closer to practical application

May 10, 2025
It’s Hard to Get Meds to the Lungs: Breathable Algae Offers a New Path.

It’s Hard to Get Meds to the Lungs: Breathable Algae Offers a New Path

May 7, 2025
New Bayesian Method Enables Rapid Detection of Quantum Dot Charge States

New Bayesian Method Enables Rapid Detection of Quantum Dot Charge States

May 2, 2025
Unique molecule may lead to smaller, more efficient computers

Unique molecule may lead to smaller, more efficient computers

May 2, 2025
Depositing dots on corrugated chips improves photodetector capabilities.

Depositing dots on corrugated chips improves photodetector capabilities

May 2, 2025

Explaining the link between ‘good’ gut bacteria and rheumatoid arthritis

May 2, 2025
The way for scalable organic solar cells with enhanced thickness tolerance.

The way for scalable organic solar cells with enhanced thickness tolerance

May 1, 2025
Researchers advance toward a fault-tolerant quantum computer.

Researchers advance toward a fault-tolerant quantum computer

April 30, 2025

Couple satisfaction linked to fewer cognitive issues with chemo

April 30, 2025
  • About
  • Advertise
  • Privacy Policy
  • Terms & Conditions
  • Contact
Sunday, May 18, 2025
  • Login
  • Register
Nanodigest
  • Home
  • Categories
    • Biological Science & Technology
    • Chemical Science & Technology
    • Material Science & Technology
    • Physical Science & Technology
    • Innovations & Education
  • NanoDigestExclusive

    Couple satisfaction linked to fewer cognitive issues with chemo

    Ultrasound and Cilia to Clean Implanted Stents and Catheters

    Ultrasound and Cilia to Clean Implanted Stents and Catheters

    Celebrating Science

    Nobel prize for a New Way in Cancer Treatment

    Nobel prize for New Way in Cancer Treatment

    Simple to use device. Nano Digest.

    Simple to Use Device

    Nanofoam: Breakthrough in Material Design. Nano Digest.

    Nanofoam: Breakthrough in Material Design

    The Future of Solar Energy. Nano Digest.

    The Future of Solar Energy

    Transfer data and multiple lights at the same time. Nano Digest.

    Transfer data and multiple lights at the same time

    Creator of Lithium Ion Batteries, John Goodenough dies at 100

    Trending Tags

    • 2D nanospace
    • 3D nano structures
    • Bacterial magnetic nanoparticle
    • Creation of nano technology
    • nano particles
    • Nano Technology
    • Nano Tv
    • nanomaterials
    • nanoparticles
    • Nanosciences
    • nanotubes
    • Nanowire
  • Nano TvYouTube
    Nanotechnology in Engineering – NANOENGINEERING | Nano Tv

    Nanotechnology in Engineering – NANOENGINEERING | Nano Tv

    nanotechnology, materials, graphene, nano digest, NanoTV

    Nanotechnology in Materials – GRAPHENE | Nano Tv

    Nanotechnology in Electronics - NANOELECTRONICS | Nano Tv, Nano Digest

    Nanotechnology in Electronics-NANOELECTRONICS | Nano Tv

    Nanotechnology in Medicine - NANOMEDICINE, Nano Tv, nano digest

    Nanotechnology in Medicine-NANOMEDICINE | Nano Tv

    Molecular Nanotechnology-NANOTECHNOLOGY & IMPLEMENTATIONS | Nano Tv, It deals with engineering nanoscale machines that operate on the molecular scale distinct from other areas of nanotechnology, such as nanoscale materials, nano digest

    Molecular Nanotechnology-NANOTECHNOLOGY & IMPLEMENTATIONS | Nano Tv

    What are Nanoparticles?, nano digest

    What are NANOPARTICLES?: Nano Tv

    THE ORIGIN & CHALLENGE by Richard Feynman | Nano Tv

    THE ORIGIN & CHALLENGE by Richard Feynman: Nano Tv

    Introduction, NANOTECHNOLOGY, nano digest, Nano Tv

    Introduction to NANOTECHNOLOGY | Nano Tv

  • ShopSale
No Result
View All Result
Nanodigest
No Result
View All Result
Home Innovations & Education

Silicon Anode Nanostructure Generates New Potential for Lithium-Ion Batteries

by Nano Digest
August 6, 2021
in Innovations & Education
0
19
491
SHARES
1.4k
VIEWS
Share on FacebookShare on TwitterShare on Whatsapp

In chamber 1, the nanoparticles, made from tantalum metal, are grown. Within this chamber, individual tantalum atoms clump together, similar to the formation of rain droplets. In chamber 2, the nanoparticles are mass filtered, removing ones that are too large or too small. In chamber 3, a layer of nanoparticles is deposited. This layer is then “sprayed” with isolated silicon atoms, forming a silicon layer. This process can then be repeated to create a multi-layered structure. Credit: Schematic created by Pavel Puchenkov, OIST Scientific Computing & Data Analysis Section

Scientists reveal a new nanostructure that could revolutionize technology in batteries and beyond.

New research has identified a nanostructure that improves the anode in lithium-ion batteries

Instead of using graphite for the anode, the researchers turned to silicon: a material that stores more charge but is susceptible to fracturing

The team made the silicon anode by depositing silicon atoms on top of metallic nanoparticles

The resulting nanostructure formed arches, increasing the strength and structural integrity of the anode

Electrochemical tests showed the lithium-ion batteries with the improved silicon anodes had a higher charge capacity and longer lifespan

New research conducted by the Okinawa Institute of Science and Technology Graduate University (OIST) has identified a specific building block that improves the anode in lithium-ion batteries. The unique properties of the structure, which was built using nanoparticle technology, are revealed and explained today (February 5, 2021) in Communications Materials.

Powerful, portable and rechargeable, lithium-ion batteries are crucial components of modern technology, found in smartphones, laptops and electric vehicles. In 2019, their potential to revolutionize how we store and consume power in the future, as we move away from fossil fuels, was notably recognized, with the Nobel Prize co-awarded to new OIST Board of Governors member, Dr. Akira Yoshino, for his work developing the lithium-ion battery.

Traditionally, graphite is used for the anode of a lithium-ion battery, but this carbon material has major limitations.

“When a battery is being charged, lithium ions are forced to move from one side of the battery — the cathode — through an electrolyte solution to the other side of the battery — the anode. Then, when a battery is being used, the lithium ions move back into the cathode and an electric current is released from the battery,” explained Dr. Marta Haro, a former researcher at OIST and first author of the study. “But in graphite anodes, six atoms of carbon are needed to store one lithium ion, so the energy density of these batteries is low.”

With science and industry currently exploring the use of lithium-ion batteries to power electric vehicles and aerospace craft, improving energy density is critical. Researchers are now searching for new materials that can increase the number of lithium ions stored in the anode.

One of the most promising candidates is silicon, which can bind four lithium ions for every one silicon atom.

20

In the first stage, the silicon film exists as a rigid but wobbly columnar structure. In the second stage, the columns touch at the top, forming a vaulted structure, which is strong due to arch action. In the third stage, further deposition of silicon atoms results in a sponge-like structure. The red dashed lines show how the silicon deforms as a force is applied. Credit: Schematic created by Dr. Panagiotis Grammatikopoulos, OIST Nanoparticles by Design Unit and Particle Technology Laboratory, ETH Zürich

“Silicon anodes can store ten times as much charge in a given volume than graphite anodes — a whole order of magnitude higher in terms of energy density,” said Dr. Haro. “The problem is, as the lithium ions move into the anode, the volume change is huge, up to around 400%, which causes the electrode to fracture and break.”

The large volume change also prevents stable formation of a protective layer that lies between the electrolyte and the anode. Every time the battery is charged, this layer therefore must continually reform, using up the limited supply of lithium ions and reducing the lifespan and rechargeability of the battery.

“Our goal was to try and create a more robust anode capable of resisting these stresses, that can absorb as much lithium as possible and ensure as many charge cycles as possible before deteriorating,” said Dr. Grammatikopoulos, senior author of the paper. “And the approach we took was to build a structure using nanoparticles.”

In a previous paper, published in 2017 in Advanced Science, the now-disbanded OIST Nanoparticles by Design Unit developed a cake-like layered structure, where each layer of silicon was sandwiched between tantalum metal nanoparticles. This improved the structural integrity of the silicon anode, preventing over-swelling.

While experimenting with different thicknesses of the silicon layer to see how it affected the material’s elastic properties, the researchers noticed something strange.

“There was a point at a specific thickness of the silicon layer where the elastic properties of the structure completely changed,” said Theo Bouloumis, a current PhD student at OIST who was conducting this experiment. “The material became gradually stiffer, but then quickly decreased in stiffness when the thickness of the silicon layer was further increased. We had some ideas, but at the time, we didn’t know the fundamental reason behind why this change occurred.”

Now, this new paper finally provides an explanation for the sudden spike in stiffness at one critical thickness.

Through microscopy techniques and computer simulations at the atomic level, the researchers showed that as the silicon atoms are deposited onto the layer of nanoparticles, they don’t form an even and uniform film. Instead, they form columns in the shape of inverted cones, growing wider and wider as more silicon atoms are deposited. Eventually, the individual silicon columns touch each other, forming a vaulted structure.

“The vaulted structure is strong, just like an arch is strong in civil engineering,” said Dr. Grammatikopoulos. “The same concept applies, just on a nanoscale.”

Importantly, the increased strength of the structure also coincided with enhanced battery performance. When the scientists carried out electrochemical tests, they found that the lithium-ion battery had an increased charge capacity. The protective layer was also more stable, meaning the battery could withstand more charge cycles.

These improvements are only seen at the precise moment that the columns touch. Before this moment occurs, the individual pillars are wobbly and so cannot provide structural integrity to the anode. And if silicon deposition continues after the columns touch, it creates a porous film with many voids, resulting in a weak, sponge-like behavior.

This reveal of the vaulted structure and how it gains its unique properties not only acts as an important step forward towards the commercialization of silicon anodes in lithium-ion batteries, but also has many other potential applications within material sciences.

“The vaulted structure could be used when materials are needed that are strong and able to withstand various stresses, such as for bio-implants or for storing hydrogen,” said Dr. Grammatikopoulos. “The exact type of material you need — stronger or softer, more flexible or less flexible — can be precisely made, simply by changing the thickness of the layer. That’s the beauty of nanostructures.”

Share196Tweet123Send
Nano Digest

Nano Digest

  • Trending
  • Comments
  • Latest

Nanotechnology in Cancer

September 10, 2020
Emergence of 2.5D Materials for Futuristic Applications

Emergence of 2.5D Materials for Futuristic Applications

June 29, 2022
New research methods developed for nano and quantum materials. Nano Digest.

New research methods developed for nano and quantum materials

February 24, 2023
Designing Gas detecting devices using nanomaterials. Nano Digest.

Designing Gas detecting devices using nanomaterials

2
3D Printing Allows Precise Light Control for Color Composition. nano Digest.

3D Printing Allows Precise Light Control for Color Composition

2

Wearable sensor monitors health, administers drugs using saliva and tears

1
Sugar-coated nanotherapy dramatically improves neuron survival in Alzheimer’s model.

Sugar-coated nanotherapy improves neuron survival

May 15, 2025
Quantum simulation of chemical dynamics achieved for first time

Quantum simulation of chemical dynamics achieved for first time

May 15, 2025
The mysterious chemical world inside nanopores.

The Mysterious Chemical World Inside Nanopores

May 13, 2025
Nanodigest

Copyright © 2009-2022 NanoDigest.in

Navigate Site

  • About
  • Advertise
  • Privacy Policy
  • Terms & Conditions
  • Contact

Follow Us

No Result
View All Result
  • Home
  • Biological Science & Technology
  • Chemical Science & Technology
  • Material Science & Technology
  • Physical Science & Technology
  • Innovations & Education
  • NanoDigest Exclusive
  • Nano Tv
  • —————————–
  • About
  • Advertise
  • Contact
  • Privacy Policy
  • Terms & Conditions

Copyright © 2009-2022 NanoDigest.in

Welcome Back!

Sign In with Google
OR

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Sign Up with Google
OR

Fill the forms below to register

*By registering into our website, you agree to the Terms & Conditions and Privacy Policy.
All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Cookie SettingsAccept All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.