• Latest
  • Trending
  • All

Stabilisation of charge density wave phase by interfacial interactions

August 8, 2021
Students develop novel multi-metal 3D printing process.

Students develop novel multi-metal 3D printing process

September 4, 2025
Geometry revealed at the heart of quantum matter 

Geometry revealed at the heart of quantum matter

September 2, 2025
Wrinkles in atomically thin materials unlock ultra efficient electronics

Wrinkles in Atomically Thin Materials Unlock Ultra efficient Electronics

August 26, 2025
Researchers track the motion of a single electron during a chemical reaction

Researchers track the motion of a single electron during a chemical reaction

August 21, 2025

New method produces ultra-thin membranes

August 20, 2025
BREATHE NEW LIFE INTO UNUSED VACCINES

BREATHE NEW LIFE INTO UNUSED VACCINES

August 13, 2025
Illuminate previously unseen properties of materials

Illuminate previously unseen properties of materials

August 13, 2025
AI helps chemists develop tougher plastics.

AI helps chemists develop tougher plastics

August 9, 2025
Molecules in the Spotlight

Molecules in the Spotlight

August 8, 2025
Ultra-fast, in-line atomic force microscope (AFM),

New Ultra-fast, in-line Atomic Force Microscope (AFM)

August 8, 2025
Friction which cools

Friction which cools

August 7, 2025
Left-handed or right-handed? Nanostructures identified by light.

Left-handed or right-handed? Nanostructures identified by light

August 5, 2025
  • About
  • Advertise
  • Privacy Policy
  • Terms & Conditions
  • Contact
Saturday, September 13, 2025
  • Login
  • Register
Nanodigest
  • Home
  • Categories
    • Biological Science & Technology
    • Chemical Science & Technology
    • Material Science & Technology
    • Physical Science & Technology
    • Innovations & Education
  • NanoDigestExclusive
    Students develop novel multi-metal 3D printing process.

    Students develop novel multi-metal 3D printing process

    Ultra-fast, in-line atomic force microscope (AFM),

    New Ultra-fast, in-line Atomic Force Microscope (AFM)

    Sydney scholar Richard Payne honoured.

    Sydney scholar Richard Payne honoured

    AI and X-ray Vision to Gain Insight into Battery Electrolyte.

    AI and X-ray Vision to Gain Insight into Battery Electrolyte

    Emergence Quantum: a commercial quantum research 'special ops' team

    Emergence Quantum: a commercial quantum research ‘special ops’ team

    Couple satisfaction linked to fewer cognitive issues with chemo

    Ultrasound and Cilia to Clean Implanted Stents and Catheters

    Ultrasound and Cilia to Clean Implanted Stents and Catheters

    Celebrating Science

    Nobel prize for a New Way in Cancer Treatment

    Nobel prize for New Way in Cancer Treatment

    Trending Tags

    • 2D nanospace
    • 3D nano structures
    • Bacterial magnetic nanoparticle
    • Creation of nano technology
    • nano particles
    • Nano Technology
    • Nano Tv
    • nanomaterials
    • nanoparticles
    • Nanosciences
    • nanotubes
    • Nanowire
  • Nano TvYouTube
    Nanotechnology in Engineering – NANOENGINEERING | Nano Tv

    Nanotechnology in Engineering – NANOENGINEERING | Nano Tv

    nanotechnology, materials, graphene, nano digest, NanoTV

    Nanotechnology in Materials – GRAPHENE | Nano Tv

    Nanotechnology in Electronics - NANOELECTRONICS | Nano Tv, Nano Digest

    Nanotechnology in Electronics-NANOELECTRONICS | Nano Tv

    Nanotechnology in Medicine - NANOMEDICINE, Nano Tv, nano digest

    Nanotechnology in Medicine-NANOMEDICINE | Nano Tv

    Molecular Nanotechnology-NANOTECHNOLOGY & IMPLEMENTATIONS | Nano Tv, It deals with engineering nanoscale machines that operate on the molecular scale distinct from other areas of nanotechnology, such as nanoscale materials, nano digest

    Molecular Nanotechnology-NANOTECHNOLOGY & IMPLEMENTATIONS | Nano Tv

    What are Nanoparticles?, nano digest

    What are NANOPARTICLES?: Nano Tv

    THE ORIGIN & CHALLENGE by Richard Feynman | Nano Tv

    THE ORIGIN & CHALLENGE by Richard Feynman: Nano Tv

    Introduction, NANOTECHNOLOGY, nano digest, Nano Tv

    Introduction to NANOTECHNOLOGY | Nano Tv

  • ShopSale
No Result
View All Result
Nanodigest
No Result
View All Result
Home Physical Science & Technology

Stabilisation of charge density wave phase by interfacial interactions

by Nano Digest
August 8, 2021
in Physical Science & Technology
0
491
SHARES
1.4k
VIEWS
Share on FacebookShare on TwitterShare on Whatsapp
Figure shows (a) scanning transmission electron microscope measurement of the zigzag edge of a tantalum disulfide (TaS2) flake on hexagonal boron nitride (h-BN) with the predicted geometric structures calculated by density functional theory (DFT) calculations. (b) Large area and zoom-in atomic force microscopy images of 2H-TaS­2 (triangular shape) epitaxially grown on h-BN substrate. Scale bar is 1 nm. Credit: ACS Nano

NUS researchers have demonstrated that the charge density wave (CDW) phase in H-phase tantalum disulfide (TaS2) bilayers can be stabilized at room temperature by interfacial interactions with a hexagonal boron nitride (h-BN) substrate.

Quantum mechanics tell us that all particles behave as waves. The wave nature of particles is particularly evident for particles with very small masses, such as electrons. In some low-dimensional materials, electrons form coherent, periodic waves in the crystal lattice, resulting in wave-like distortions in the atomic lattice called a CDW phase. The CDW phase can exhibit novel phenomena, and has a different electrical conductivity from the usual phase which can potentially lead to new advances in device applications. However, the CDW phase typically exists at very low temperatures. Efforts to increase the CDW phase transition temperature, known as TCDW, have focused on the impact of interfacial strain and charge dopants. However, the effects of such modifications on TCDW have not been significant, because the extent to which the CDW phase is stabilized by such modifications is intrinsically limited.

In this work, Prof Loh Kian Ping’s group from the Department of Chemistry, NUS, observed the presence of a CDW phase at room temperature in H-phase TaS2 bilayers when they are epitaxially grown on h-BN substrates. The same CDW phase in bulk TaS2 (without the h-BN substrate) exists only at much lower temperatures, below 77 K. Using quantum mechanical calculations, Prof Quek Su Ying’s group from the Department of Physics, NUS, found that the increase in TCDW resulted primarily from interfacial interactions between the TaS2 and the h-BN substrate, and to a lesser extent, interfacial strain.

Scanning transmission electron microscopy and Raman measurements provided evidence for the room temperature 3 × 3 CDW phase for TaS2 when it is epitaxially grown on a h-BN substrate. TaS2 forms a Moiré superlattice with h-BN. In the CDW structure, the lattice arrangement of the sulfur (S) atoms are no longer equidistant from one another, but can be classified into two groups. One group has S atoms that are arranged further from each other (+), while another group has S atoms arranged closer to one another (-).

Density functional theory calculations on 18 different stacking configurations in this supercell show that the tantalum (Ta) and S atoms are always arranged in such a way that the (+) group is centered on the underlying nitrogen (N) atom, while the (-) group is centered on the underlying boron (B) atom. This observation can be understood from the fact that the S atoms carry a slight negative charge in TaS2. They are repelled by the negatively charged N atom in h-BN, and attracted by the positively charged B atom. Thus, the Moiré electrostatic modulation induced by the underlying B and N atoms in the h-BN substrate favor the CDW atomic structure in bilayer (or monolayer) TaS2. This novel mechanism for the stabilization of the CDW phase is confirmed by the experimental observation—that TaS2 randomly oriented on the h-BN substrate does not have a room temperature CDW phase.

Prof Quek said, “In the literature, Moiré interactions in 2-D material heterostructures have resulted in many interesting phenomena. This work shows that the full range of such phenomena is still yet to be uncovered completely. We can use these interfacial Moiré interactions to engineer the quantum phase of 2-D material systems, and this degree of control is what makes atomically thin materials so fascinating.”

Share196Tweet123Send
Nano Digest

Nano Digest

  • Trending
  • Comments
  • Latest

Nanotechnology in Cancer

September 10, 2020
Emergence of 2.5D Materials for Futuristic Applications

Emergence of 2.5D Materials for Futuristic Applications

June 29, 2022
New research methods developed for nano and quantum materials. Nano Digest.

New research methods developed for nano and quantum materials

February 24, 2023
Designing Gas detecting devices using nanomaterials. Nano Digest.

Designing Gas detecting devices using nanomaterials

2
3D Printing Allows Precise Light Control for Color Composition. nano Digest.

3D Printing Allows Precise Light Control for Color Composition

2

Wearable sensor monitors health, administers drugs using saliva and tears

1
Students develop novel multi-metal 3D printing process.

Students develop novel multi-metal 3D printing process

September 4, 2025
Geometry revealed at the heart of quantum matter 

Geometry revealed at the heart of quantum matter

September 2, 2025
Wrinkles in atomically thin materials unlock ultra efficient electronics

Wrinkles in Atomically Thin Materials Unlock Ultra efficient Electronics

August 26, 2025
Nanodigest

Copyright © 2009-2022 NanoDigest.in

Navigate Site

  • About
  • Advertise
  • Privacy Policy
  • Terms & Conditions
  • Contact

Follow Us

No Result
View All Result
  • Home
  • Biological Science & Technology
  • Chemical Science & Technology
  • Material Science & Technology
  • Physical Science & Technology
  • Innovations & Education
  • NanoDigest Exclusive
  • Nano Tv
  • —————————–
  • About
  • Advertise
  • Contact
  • Privacy Policy
  • Terms & Conditions

Copyright © 2009-2022 NanoDigest.in

Welcome Back!

Sign In with Google
OR

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Sign Up with Google
OR

Fill the forms below to register

*By registering into our website, you agree to the Terms & Conditions and Privacy Policy.
All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Cookie SettingsAccept All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.