• Latest
  • Trending
  • All

Success in controlling perovskite ions’ composition paves the way for device applications

August 9, 2021
A building material that lives and stores carbon

A building material that lives and stores carbon

June 20, 2025
Researchers crack the code of body’s ancient immune defense.

Researchers crack the code of body’s ancient immune defense

June 19, 2025
Nanofibers yield stronger, tougher carbon fiber composites

Nanofibers yield stronger, tougher carbon fiber composites

June 18, 2025
The New Method for Formation of Chemical Bonds

The New Method for Formation of Chemical Bonds

June 18, 2025
Nanoneedles patch for painless Cancer Biopsies

Nanoneedles patch for painless Cancer Biopsies

June 17, 2025
Practising medicine on a lifelike silicone model

Practising medicine on a lifelike silicone model

June 16, 2025
Stabilising fleeting quantum states with light

Stabilising fleeting quantum states with light

June 9, 2025
New Printable, Injectable Materials for Advanced Medical Applications

New Printable, Injectable Materials for Advanced Medical Applications

May 29, 2025
Metal fleece: material for the batteries of the future

Metal fleece: material for the batteries of the future

May 24, 2025
AI and X-ray Vision to Gain Insight into Battery Electrolyte.

AI and X-ray Vision to Gain Insight into Battery Electrolyte

May 23, 2025
Mask users can now breathe easy on two counts

Mask users can now breathe easy on two counts

May 23, 2025
Boosting Cancer Treatment.

Boosting Cancer Treatment

May 23, 2025
  • About
  • Advertise
  • Privacy Policy
  • Terms & Conditions
  • Contact
Monday, June 23, 2025
  • Login
  • Register
Nanodigest
  • Home
  • Categories
    • Biological Science & Technology
    • Chemical Science & Technology
    • Material Science & Technology
    • Physical Science & Technology
    • Innovations & Education
  • NanoDigestExclusive
    AI and X-ray Vision to Gain Insight into Battery Electrolyte.

    AI and X-ray Vision to Gain Insight into Battery Electrolyte

    Emergence Quantum: a commercial quantum research 'special ops' team

    Emergence Quantum: a commercial quantum research ‘special ops’ team

    Couple satisfaction linked to fewer cognitive issues with chemo

    Ultrasound and Cilia to Clean Implanted Stents and Catheters

    Ultrasound and Cilia to Clean Implanted Stents and Catheters

    Celebrating Science

    Nobel prize for a New Way in Cancer Treatment

    Nobel prize for New Way in Cancer Treatment

    Simple to use device. Nano Digest.

    Simple to Use Device

    Nanofoam: Breakthrough in Material Design. Nano Digest.

    Nanofoam: Breakthrough in Material Design

    The Future of Solar Energy. Nano Digest.

    The Future of Solar Energy

    Trending Tags

    • 2D nanospace
    • 3D nano structures
    • Bacterial magnetic nanoparticle
    • Creation of nano technology
    • nano particles
    • Nano Technology
    • Nano Tv
    • nanomaterials
    • nanoparticles
    • Nanosciences
    • nanotubes
    • Nanowire
  • Nano TvYouTube
    Nanotechnology in Engineering – NANOENGINEERING | Nano Tv

    Nanotechnology in Engineering – NANOENGINEERING | Nano Tv

    nanotechnology, materials, graphene, nano digest, NanoTV

    Nanotechnology in Materials – GRAPHENE | Nano Tv

    Nanotechnology in Electronics - NANOELECTRONICS | Nano Tv, Nano Digest

    Nanotechnology in Electronics-NANOELECTRONICS | Nano Tv

    Nanotechnology in Medicine - NANOMEDICINE, Nano Tv, nano digest

    Nanotechnology in Medicine-NANOMEDICINE | Nano Tv

    Molecular Nanotechnology-NANOTECHNOLOGY & IMPLEMENTATIONS | Nano Tv, It deals with engineering nanoscale machines that operate on the molecular scale distinct from other areas of nanotechnology, such as nanoscale materials, nano digest

    Molecular Nanotechnology-NANOTECHNOLOGY & IMPLEMENTATIONS | Nano Tv

    What are Nanoparticles?, nano digest

    What are NANOPARTICLES?: Nano Tv

    THE ORIGIN & CHALLENGE by Richard Feynman | Nano Tv

    THE ORIGIN & CHALLENGE by Richard Feynman: Nano Tv

    Introduction, NANOTECHNOLOGY, nano digest, Nano Tv

    Introduction to NANOTECHNOLOGY | Nano Tv

  • ShopSale
No Result
View All Result
Nanodigest
No Result
View All Result
Home Physical Science & Technology

Success in controlling perovskite ions’ composition paves the way for device applications

by Nano Digest
August 9, 2021
in Physical Science & Technology
0
491
SHARES
1.4k
VIEWS
Share on FacebookShare on TwitterShare on Whatsapp

Success in controlling perovskite ions’ composition paves the way for device applications

Hybrid organic-inorganic perovskites (*1) have received much attention as potential next generation solar cells and as materials for light-emitting devices.

Kobe University’s Associate Professor TACHIKAWA Takashi (of the Molecular Photoscience Research Center) and Dr. KARIMATA Izuru (previously a graduate student engaged in research at the Graduate School of Science) have succeeded in completely substituting the halide ions of perovskite nanocrystals while maintaining their morphology and light-emitting efficiency.

Furthermore, by using techniques such as single-particle photoluminescence imaging, the researchers were able to understand the momentary changes in light emission and the crystal structure, which in turn enabled them to develop a principle for controlling ion composition.

It is expected that these research results will contribute towards enabling the synthesis of perovskites of varying compositions and advancing the development of devices which utilize them. In addition, it is hoped that the flexibility of perovskite structures can be harnessed, allowing for them to be applied to devices and the creation of new functional materials.

These findings were published in the German academic journal ‘Angewandte Chemie International Edition’ on October 19, 2020.

Research Background

Hybrid organic-inorganic perovskites, such as organic lead halide perovskites (for example, CH3NH3PbX3 (X = Cl, Br, I)), have been receiving worldwide attention as a promising material for highly efficient solar cells. Furthermore, the color of the light that they emit can be controlled by altering the type and composition of the halide ions. Consequently, it is hoped that hybrid organic-inorganic perovskites can be applied to light-emitting devices such as displays and lasers.

However, the halide ions inside the crystals are known to move around even at room temperature, and this high flexibility causes issues such as reductions in both synthesis reproducibility and device durability.

Figure 1: Ion behavior in organic lead halide perovskite. The bromide ion (Br-) in the solution can be easily exchanged with the iodide ion (I-) inside the crystal. The movement of the halide ions inside the crystal is instigated by the holes where the halide atoms have been removed.

Research Methodology

In this study, the researchers used a custom-made flow reactor (*3) to precisely control the exchange reaction between the CH3NH3PbI3 nanocrystals and Br- ions in solution. This enabled them to successfully convert the nanocrystals into CH3NH3PbBr3 nanocrystals while maintaining their morphology and light-emitting efficiency.

It is important to know what kind of reaction will occur inside the crystals in order to develop synthesis techniques. To understand this, the researchers used a fluorescence microscope to observe how each individual nanocrystal was reacting. From this observation, they understood that once the red light emitted by the CH3NH3PbI3 had completely disappeared, the green light originating from the CH3NH3PbBr3 was suddenly generated after an interval of 10s to 100s of seconds. Based on the results of structural analysis using an x-ray beam, it was revealed that Br- ions replaced I- ions inside the crystal structure while a bromide-rich layer formed on the surface. Afterwards, the bromide on the surface layer gradually moved into the inner regions.

It is believed that the red light emissions became unobservable because the inner regions of the crystal structure were partially disordered during the ion transition, which led to the loss of energy necessary for light emission. Subsequently, CH3NH3PbBr3 crystal nuclei formed inside the nanocrystal particle and a cooperative transition to the green light generating state occurred.

From these results, it can be said that temporally separating the crystal structure transitions and the subsequent restructuring (that occurs on a nanometer scale) is one of the keys to the successful, precise synthesis of organic lead halide perovskites.

                           

Figure 2 : Top: Single-particle photoluminescence imaging of the halide exchange reaction using the flow reactor. The light emitted changed from red to green while the crystals maintained their morphology and light-emitting efficiencies.

Below: Illustration of structural changes to the perovskite nanocrystal caused by the halide exchange reaction. The dark state is caused by insufficient electric charge for light generation, which resulted from the disruption of the crystal’s inner structure (defects).

Further Developments

The structural transformation process observed in perovskite nanocrystals in this study is thought to be related to all modes of nanomaterial synthesis that are based on ion exchange, therefore future research could hopefully illuminate the underlying mechanism. Although researchers have a negative impression of organic halide perovskites’ flexibility, it is hoped that this characteristic could be exploited and applied to the development of new materials and devices that can react to the environment and external stimuli.

Acknowledgements

This research was supported by the following Japan Society for the Promotion of Science KAKENHI grants: Grant-in-Aid for Scientific Research B (JP18H01944) and Grant-in-Aid for Scientific Research on Innovative Areas (JP18H04517 and JP20H04673).

Glossary

  1. Hybrid organic-inorganic perovskite: A perovskite-type compound consisting of both organic and inorganic ions. A typical organic lead halide perovskite consists of organic ions, halide ions and lead ions. Normally, perovskites such as calcium titanate (CaTiO3) are compounds with an ABO3 structure (A are trivalent metal ions and B are tetravalent metal ions).
  2. Nanocrystal: A nanometer-scale microcrystal. One nanometer (10-9m) is equal to a billionth of 1m. This study used crystals of approximately 90 nanometers.
  3. Flow Reactor: An apparatus that enables reactions to be conducted with multiple flowing solutions. In this study, the nanocrystals were immobilized on a glass substrate. As a solution containing an iodide ion flowed over the glass substrate, the emitted light resulting from the ion exchange reaction was observed under a microscope.
Tags: composition
Share196Tweet123Send
Nano Digest

Nano Digest

  • Trending
  • Comments
  • Latest

Nanotechnology in Cancer

September 10, 2020
Emergence of 2.5D Materials for Futuristic Applications

Emergence of 2.5D Materials for Futuristic Applications

June 29, 2022
New research methods developed for nano and quantum materials. Nano Digest.

New research methods developed for nano and quantum materials

February 24, 2023
Designing Gas detecting devices using nanomaterials. Nano Digest.

Designing Gas detecting devices using nanomaterials

2
3D Printing Allows Precise Light Control for Color Composition. nano Digest.

3D Printing Allows Precise Light Control for Color Composition

2

Wearable sensor monitors health, administers drugs using saliva and tears

1
A building material that lives and stores carbon

A building material that lives and stores carbon

June 20, 2025
Researchers crack the code of body’s ancient immune defense.

Researchers crack the code of body’s ancient immune defense

June 19, 2025
Nanofibers yield stronger, tougher carbon fiber composites

Nanofibers yield stronger, tougher carbon fiber composites

June 18, 2025
Nanodigest

Copyright © 2009-2022 NanoDigest.in

Navigate Site

  • About
  • Advertise
  • Privacy Policy
  • Terms & Conditions
  • Contact

Follow Us

No Result
View All Result
  • Home
  • Biological Science & Technology
  • Chemical Science & Technology
  • Material Science & Technology
  • Physical Science & Technology
  • Innovations & Education
  • NanoDigest Exclusive
  • Nano Tv
  • —————————–
  • About
  • Advertise
  • Contact
  • Privacy Policy
  • Terms & Conditions

Copyright © 2009-2022 NanoDigest.in

Welcome Back!

Sign In with Google
OR

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Sign Up with Google
OR

Fill the forms below to register

*By registering into our website, you agree to the Terms & Conditions and Privacy Policy.
All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Cookie SettingsAccept All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.