• Latest
  • Trending
  • All
Sugar-coated nanotherapy dramatically improves neuron survival in Alzheimer’s model.

Sugar-coated nanotherapy improves neuron survival

May 15, 2025
A building material that lives and stores carbon

A building material that lives and stores carbon

June 20, 2025
Researchers crack the code of body’s ancient immune defense.

Researchers crack the code of body’s ancient immune defense

June 19, 2025
Nanofibers yield stronger, tougher carbon fiber composites

Nanofibers yield stronger, tougher carbon fiber composites

June 18, 2025
The New Method for Formation of Chemical Bonds

The New Method for Formation of Chemical Bonds

June 18, 2025
Nanoneedles patch for painless Cancer Biopsies

Nanoneedles patch for painless Cancer Biopsies

June 17, 2025
Practising medicine on a lifelike silicone model

Practising medicine on a lifelike silicone model

June 16, 2025
Stabilising fleeting quantum states with light

Stabilising fleeting quantum states with light

June 9, 2025
New Printable, Injectable Materials for Advanced Medical Applications

New Printable, Injectable Materials for Advanced Medical Applications

May 29, 2025
Metal fleece: material for the batteries of the future

Metal fleece: material for the batteries of the future

May 24, 2025
AI and X-ray Vision to Gain Insight into Battery Electrolyte.

AI and X-ray Vision to Gain Insight into Battery Electrolyte

May 23, 2025
Mask users can now breathe easy on two counts

Mask users can now breathe easy on two counts

May 23, 2025
Boosting Cancer Treatment.

Boosting Cancer Treatment

May 23, 2025
  • About
  • Advertise
  • Privacy Policy
  • Terms & Conditions
  • Contact
Monday, June 23, 2025
  • Login
  • Register
Nanodigest
  • Home
  • Categories
    • Biological Science & Technology
    • Chemical Science & Technology
    • Material Science & Technology
    • Physical Science & Technology
    • Innovations & Education
  • NanoDigestExclusive
    AI and X-ray Vision to Gain Insight into Battery Electrolyte.

    AI and X-ray Vision to Gain Insight into Battery Electrolyte

    Emergence Quantum: a commercial quantum research 'special ops' team

    Emergence Quantum: a commercial quantum research ‘special ops’ team

    Couple satisfaction linked to fewer cognitive issues with chemo

    Ultrasound and Cilia to Clean Implanted Stents and Catheters

    Ultrasound and Cilia to Clean Implanted Stents and Catheters

    Celebrating Science

    Nobel prize for a New Way in Cancer Treatment

    Nobel prize for New Way in Cancer Treatment

    Simple to use device. Nano Digest.

    Simple to Use Device

    Nanofoam: Breakthrough in Material Design. Nano Digest.

    Nanofoam: Breakthrough in Material Design

    The Future of Solar Energy. Nano Digest.

    The Future of Solar Energy

    Trending Tags

    • 2D nanospace
    • 3D nano structures
    • Bacterial magnetic nanoparticle
    • Creation of nano technology
    • nano particles
    • Nano Technology
    • Nano Tv
    • nanomaterials
    • nanoparticles
    • Nanosciences
    • nanotubes
    • Nanowire
  • Nano TvYouTube
    Nanotechnology in Engineering – NANOENGINEERING | Nano Tv

    Nanotechnology in Engineering – NANOENGINEERING | Nano Tv

    nanotechnology, materials, graphene, nano digest, NanoTV

    Nanotechnology in Materials – GRAPHENE | Nano Tv

    Nanotechnology in Electronics - NANOELECTRONICS | Nano Tv, Nano Digest

    Nanotechnology in Electronics-NANOELECTRONICS | Nano Tv

    Nanotechnology in Medicine - NANOMEDICINE, Nano Tv, nano digest

    Nanotechnology in Medicine-NANOMEDICINE | Nano Tv

    Molecular Nanotechnology-NANOTECHNOLOGY & IMPLEMENTATIONS | Nano Tv, It deals with engineering nanoscale machines that operate on the molecular scale distinct from other areas of nanotechnology, such as nanoscale materials, nano digest

    Molecular Nanotechnology-NANOTECHNOLOGY & IMPLEMENTATIONS | Nano Tv

    What are Nanoparticles?, nano digest

    What are NANOPARTICLES?: Nano Tv

    THE ORIGIN & CHALLENGE by Richard Feynman | Nano Tv

    THE ORIGIN & CHALLENGE by Richard Feynman: Nano Tv

    Introduction, NANOTECHNOLOGY, nano digest, Nano Tv

    Introduction to NANOTECHNOLOGY | Nano Tv

  • ShopSale
No Result
View All Result
Nanodigest
No Result
View All Result
Home Biological Science & Technology

Sugar-coated nanotherapy improves neuron survival

Sugar-coated nanotherapy dramatically improves neuron survival in Alzheimer’s model

by Nano Digest
May 15, 2025
in Biological Science & Technology
0
Sugar-coated nanotherapy dramatically improves neuron survival in Alzheimer’s model.

Micrographs of human neurons exposed to amyloid-beta proteins and either left untreated (left) or treated with the new nanotherapy developed at Northwestern (right). Dead neurons are stained in red; live neurons are green. Courtesy: Images by Samuel Stupp Laboratory/Northwestern University.

491
SHARES
1.4k
VIEWS
Share on FacebookShare on TwitterShare on Whatsapp

Sugar-coated nanotherapy dramatically improves neuron survival in Alzheimer’s model
By Amanda Morris

New treatment traps, neutralizes toxic proteins to stop disease progression

Scientists at Northwestern University have developed a new approach that directly combats the progression of neurodegenerative diseases like Alzheimer’s disease and amyotrophic lateral sclerosis (ALS).

In these devastating illnesses, proteins misfold and clump together around brain cells, which ultimately leads to cell death. The innovative new treatment effectively traps the proteins before they can aggregate into the toxic structures capable of penetrating neurons. The trapped proteins then harmlessly degrade in the body.

The “clean-up” strategy significantly boosted the survival of lab-grown human neurons under stress from disease-causing proteins.

Selected as an ACS Editors’ Choice article, the study was published today (May 14) in the Journal of the American Chemical Society.

“Our study highlights the exciting potential of molecularly engineered nanomaterials to address the root causes of neurodegenerative diseases,” said Northwestern’s Samuel I. Stupp, the study’s senior author. “In many of these diseases, proteins lose their functional folded structure and aggregate to make destructive fibers that enter neurons and are highly toxic to them.

“By trapping the misfolded proteins, our treatment inhibits the formation of those fibers at an early stage. Early stage, short amyloid fibers, which penetrate neurons, are believed to be the most toxic structures. With further work, we think this could significantly delay progression of the disease.”

A pioneer in regenerative medicine, Stupp is the Board of Trustees Professor of Materials Science and Engineering, Chemistry, Medicine and Biomedical Engineering at Northwestern, where he has appointments in the McCormick School of Engineering, Weinberg College of Arts and Sciences and Feinberg School of Medicine. He also is the founding director of the Center for Regenerative Nanomedicine (CRN). Zijun Gao, a Ph.D. candidate in Stupp’s laboratory, is the paper’s first author.

The Stupp group led the development and characterization of the new therapeutic materials. Co-corresponding author Zaida Alvarez — a researcher at the Institute for Bioengineering of Catalonia (IBEC) in Spain, former postdoctoral fellow in Stupp’s laboratory and current visiting scholar at CRN — led testing of the therapies in human neurons.

A sugar-coated solution

According to the World Health Organization, as many as 50 million people worldwide might have a neurodegenerative disorder. Most of these diseases are characterized by the accumulation of misfolded proteins in the brain, leading to the progressive loss of neurons. While current treatments offer limited relief, a dire need for new therapies remains.

To tackle this challenge, the researchers turned to a class of peptide amphiphiles, pioneered by the Stupp laboratory, that contain modified chains of amino acids. Peptide amphiphiles are already used in well-known pharmaceuticals including semaglutide, or Ozempic. In fact, the Northwestern investigators developed a similar molecule in 2012 that boosted insulin production.

“The advantage of peptide-based drugs is that they degrade into nutrients,” Stupp said. “The molecules in this novel therapeutic concept break down into harmless lipids, amino acids and sugars. That means there are fewer adverse side effects.”

Over the years, Stupp’s research group has designed many peptide-based materials for different therapeutic purposes. To develop a peptide amphiphile to treat neurodegenerative diseases, his team added an extra ingredient: a natural sugar called trehalose.

“Trehalose is naturally occurring in plants, fungi and insects,” Gao said. “It protects them from changing temperatures, especially dehydration and freezing. Others have discovered trehalose can protect many biological macromolecules, including proteins. So, we wanted to see if we could use it to stabilize misfolded proteins.”

Instability is key

When added to water, the peptide amphiphiles self-assembled into nanofibers coated with trehalose. Surprisingly, the trehalose destabilized the nanofibers. Although it seems counterintuitive, this decreased stability exhibited a beneficial effect.

Sugar-coated nanotherapy dramatically improves neuron survival in Alzheimer’s model.
An artistic illustration showing how a peptide amphiphile nanofiber containing trehalose (TPA) traps disease-causing proteins (Aβ42) before they can enter neurons. Courtesy: Image by Mark Seniw/Center for Regenerative Nanomedicine, Northwestern University.

By themselves, the nanofibers are strong and well-ordered — and resistant to rearranging their structure. That makes it more difficult for other molecules, like misfolded proteins, to integrate into the fibers. Less stable fibers, on the other hand, became more dynamic — and more likely to find and interact with toxic proteins.

“Unstable assemblies of molecules are very reactive,” Stupp said. “They want to interact with and bond to other molecules. If the nanofibers were stable, they would happily ignore everything around them.”

Searching for stability, the nanofibers bonded to amyloid-beta proteins, a key culprit implicated in Alzheimer’s disease. But the nanofibers didn’t just stop the amyloid-beta proteins from clumping together. The nanofibers fully incorporated the proteins into their own fibrous structures — permanently trapping them into stable filaments.

“Then, it’s no longer a peptide amphiphile fiber anymore,” Stupp said. “But a new hybrid structure comprising both the peptide amphiphile and the amyloid-beta protein. That means the nasty amyloid-beta proteins, which would have formed amyloid fibers, are trapped. They can no longer penetrate the neurons and kill them. It’s like a clean-up crew for misfolded proteins.

“This is a novel mechanism to tackle progression of neurodegenerative diseases, such as Alzheimer’s, at an earlier stage. Current therapies rely on the production of antibodies for well-formed amyloid fibers.”

Improving neuron survival

To assess the therapeutic potential of the new approach, the scientists conducted laboratory tests using human neurons derived from stem cells. The results showed the trehalose-coated nanofibers significantly improved the survival of both motor and cortical neurons when exposed to the toxic amyloid-beta protein.

Stupp says the novel approach of using unstable nanofibers to trap proteins offers a promising avenue for developing new and effective therapies for Alzheimer’s, ALS and other neurodegenerative conditions. Much like cancer treatments combine multiple therapies — like chemotherapy and surgery or hormone therapy and radiation — Stupp said the nanotherapy might be most effective when combined with other treatments.

“Our therapy might work best when targeting diseases at an earlier stage — before aggregated proteins enter cells,” Stupp said. “But it’s challenging to diagnose these diseases at early stages. So, it could be combined with therapies that target later-stage symptoms of the disease. Then, it could be a double whammy.”

Source: Northwestern University

Tags: Alzheimer’snanofibersnanomaterialsnanomedicineNeuronsNorthwestern Universityproteinssolutionstructuressugar-coatedtoxic
Share196Tweet123Send
Nano Digest

Nano Digest

  • Trending
  • Comments
  • Latest

Nanotechnology in Cancer

September 10, 2020
Emergence of 2.5D Materials for Futuristic Applications

Emergence of 2.5D Materials for Futuristic Applications

June 29, 2022
New research methods developed for nano and quantum materials. Nano Digest.

New research methods developed for nano and quantum materials

February 24, 2023
Designing Gas detecting devices using nanomaterials. Nano Digest.

Designing Gas detecting devices using nanomaterials

2
3D Printing Allows Precise Light Control for Color Composition. nano Digest.

3D Printing Allows Precise Light Control for Color Composition

2

Wearable sensor monitors health, administers drugs using saliva and tears

1
A building material that lives and stores carbon

A building material that lives and stores carbon

June 20, 2025
Researchers crack the code of body’s ancient immune defense.

Researchers crack the code of body’s ancient immune defense

June 19, 2025
Nanofibers yield stronger, tougher carbon fiber composites

Nanofibers yield stronger, tougher carbon fiber composites

June 18, 2025
Nanodigest

Copyright © 2009-2022 NanoDigest.in

Navigate Site

  • About
  • Advertise
  • Privacy Policy
  • Terms & Conditions
  • Contact

Follow Us

No Result
View All Result
  • Home
  • Biological Science & Technology
  • Chemical Science & Technology
  • Material Science & Technology
  • Physical Science & Technology
  • Innovations & Education
  • NanoDigest Exclusive
  • Nano Tv
  • —————————–
  • About
  • Advertise
  • Contact
  • Privacy Policy
  • Terms & Conditions

Copyright © 2009-2022 NanoDigest.in

Welcome Back!

Sign In with Google
OR

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Sign Up with Google
OR

Fill the forms below to register

*By registering into our website, you agree to the Terms & Conditions and Privacy Policy.
All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Cookie SettingsAccept All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.