• Latest
  • Trending
  • All

Wavy surfaces for better light control

August 9, 2021
It’s Hard to Get Meds to the Lungs: Breathable Algae Offers a New Path.

It’s Hard to Get Meds to the Lungs: Breathable Algae Offers a New Path

May 7, 2025
New Bayesian Method Enables Rapid Detection of Quantum Dot Charge States

New Bayesian Method Enables Rapid Detection of Quantum Dot Charge States

May 2, 2025
Unique molecule may lead to smaller, more efficient computers

Unique molecule may lead to smaller, more efficient computers

May 2, 2025
Depositing dots on corrugated chips improves photodetector capabilities.

Depositing dots on corrugated chips improves photodetector capabilities

May 2, 2025

Explaining the link between ‘good’ gut bacteria and rheumatoid arthritis

May 2, 2025
The way for scalable organic solar cells with enhanced thickness tolerance.

The way for scalable organic solar cells with enhanced thickness tolerance

May 1, 2025
Researchers advance toward a fault-tolerant quantum computer.

Researchers advance toward a fault-tolerant quantum computer

April 30, 2025

Couple satisfaction linked to fewer cognitive issues with chemo

April 30, 2025
AI Learns to Uncover the Hidden Atomic Structure of Crystals

AI Learns to Uncover the Hidden Atomic Structure of Crystals

April 29, 2025
Ultrasound and Cilia to Clean Implanted Stents and Catheters

Ultrasound and Cilia to Clean Implanted Stents and Catheters

April 29, 2025
Ultrafast electrical charging of liquids.

Ultrafast Electrical Charging of Liquids

April 28, 2025
Structure dictates effectiveness, safety in nanomedicine.

Structure dictates effectiveness, safety in nanomedicine

April 28, 2025
  • About
  • Advertise
  • Privacy Policy
  • Terms & Conditions
  • Contact
Friday, May 9, 2025
  • Login
  • Register
Nanodigest
  • Home
  • Categories
    • Biological Science & Technology
    • Chemical Science & Technology
    • Material Science & Technology
    • Physical Science & Technology
    • Innovations & Education
  • NanoDigestExclusive

    Couple satisfaction linked to fewer cognitive issues with chemo

    Ultrasound and Cilia to Clean Implanted Stents and Catheters

    Ultrasound and Cilia to Clean Implanted Stents and Catheters

    Celebrating Science

    Nobel prize for a New Way in Cancer Treatment

    Nobel prize for New Way in Cancer Treatment

    Simple to use device. Nano Digest.

    Simple to Use Device

    Nanofoam: Breakthrough in Material Design. Nano Digest.

    Nanofoam: Breakthrough in Material Design

    The Future of Solar Energy. Nano Digest.

    The Future of Solar Energy

    Transfer data and multiple lights at the same time. Nano Digest.

    Transfer data and multiple lights at the same time

    Creator of Lithium Ion Batteries, John Goodenough dies at 100

    Trending Tags

    • 2D nanospace
    • 3D nano structures
    • Bacterial magnetic nanoparticle
    • Creation of nano technology
    • nano particles
    • Nano Technology
    • Nano Tv
    • nanomaterials
    • nanoparticles
    • Nanosciences
    • nanotubes
    • Nanowire
  • Nano TvYouTube
    Nanotechnology in Engineering – NANOENGINEERING | Nano Tv

    Nanotechnology in Engineering – NANOENGINEERING | Nano Tv

    nanotechnology, materials, graphene, nano digest, NanoTV

    Nanotechnology in Materials – GRAPHENE | Nano Tv

    Nanotechnology in Electronics - NANOELECTRONICS | Nano Tv, Nano Digest

    Nanotechnology in Electronics-NANOELECTRONICS | Nano Tv

    Nanotechnology in Medicine - NANOMEDICINE, Nano Tv, nano digest

    Nanotechnology in Medicine-NANOMEDICINE | Nano Tv

    Molecular Nanotechnology-NANOTECHNOLOGY & IMPLEMENTATIONS | Nano Tv, It deals with engineering nanoscale machines that operate on the molecular scale distinct from other areas of nanotechnology, such as nanoscale materials, nano digest

    Molecular Nanotechnology-NANOTECHNOLOGY & IMPLEMENTATIONS | Nano Tv

    What are Nanoparticles?, nano digest

    What are NANOPARTICLES?: Nano Tv

    THE ORIGIN & CHALLENGE by Richard Feynman | Nano Tv

    THE ORIGIN & CHALLENGE by Richard Feynman: Nano Tv

    Introduction, NANOTECHNOLOGY, nano digest, Nano Tv

    Introduction to NANOTECHNOLOGY | Nano Tv

  • ShopSale
No Result
View All Result
Nanodigest
No Result
View All Result
Home Physical Science & Technology

Wavy surfaces for better light control

by Nano Digest
August 9, 2021
in Physical Science & Technology
0
491
SHARES
1.4k
VIEWS
Share on FacebookShare on TwitterShare on Whatsapp

The importance of light-​based technologies for our society was demonstrated once more in recent weeks. Thanks to the internet, millions of people can work remotely, enter virtual classrooms, or talk to friends and relatives. The internet, in turn, owes its power to countless light pulses with which enormous amounts of data are sent around the globe via optical fibres.

To steer and control these light pulses, various technologies are employed. One of the oldest and most important is the diffraction grating, which deflects light of different colours in precisely determined directions. For decades, scientists have been trying to improve the design and production of diffraction gratings to make them suitable for today’s demanding applications. At ETH Zurich, a group of researchers led by David Norris, professor at the Department of Mechanical and Process Engineering, have developed a completely new method by which more efficient and more precise diffraction gratings can be produced. They did this together with colleagues now at the University of Utrecht and the company Heidelberg Instruments Nano, which was founded as ETH spin-​off SwissLitho. The researchers published the results in the scientific journal Nature.

Interference through grooves

Diffraction gratings are based on the principle of interference. When a light wave hits a grooved surface, it is divided into many smaller waves, each emanating from an individual groove. When these waves leave the surface, they can either add together or cancel each other, depending on the direction in which they travel and on their wavelength (which is related to their colour). This explains why the surface of a CD, on which data is stored in tiny grooves, generates a rainbow of reflected colours when it is illuminated by white light.

For a diffraction grating to work properly its grooves need to have a separation similar to the wavelength of the light, which is around one micrometre – a hundred times smaller than the width of a human hair.  “Traditionally, those grooves are etched into the surface of a material using manufacturing techniques from the microelectronics industry”, says Nolan Lassaline, a PhD student in Norris’s group and first author of the study. “This means, however, that the grooves of the grating are rather square in shape. On the other hand, physics tells us that we should have grooves with a smooth and wavy pattern, like ripples on a lake.” Grooves made with traditional methods can, therefore, only ever be rough approximations, which in turn means that the diffraction grating will steer light less efficiently. By pursuing a completely new approach Norris and his collaborators have now discovered a solution to that problem.

Surface patterning with a hot probe

Their approach is based on a technology that also has its origins in Zurich. “Our method is a great-​grandchild of the scanning tunnelling microscope, which was invented almost forty years ago by Gerd Binnig and Heinrich Rohrer, who would later win the Nobel Prize for their work”, says Norris. In such a microscope, material surfaces are scanned by the sharp tip of a probe with high resolution. The images resulting from such a scan can even show the individual atoms of a material.

Conversely, however, one can also use the sharp tip to pattern a material and thus produce wavy surfaces (see picture). To do so, the researchers heat the tip of a scanning probe to almost 1000 degrees centigrade and press it into a polymer surface at certain locations. This causes the molecules of the polymer to break up and evaporate at those locations, allowing the surface to be precisely sculpted. In this way, the scientists can write almost arbitrary surface profiles point by point into the polymer layer with a resolution of a few nanometres. Finally, the pattern is transferred to an optical material by depositing a silver layer onto the polymer. The silver layer can then be detached from the polymer and used as a reflective diffraction grating.

At ETH diffraction gratings are produced by patterning a polymer layer (green) with a hot scanning probe. A silver layer (grey) is then deposited, which is finally detached with a glass slide (blue). (Visualisations: ETH Zurich / Nolan Lassaline)

This allows us to produce arbitrarily shaped diffraction gratings with a precision of just a few atomic distances in the silver layer”, says Norris. Unlike traditional square-​shaped grooves, such gratings are no longer approximations, but practically perfect and can be shaped in such a way that the interference of the reflected light waves create precisely controllable patterns.

A variety of applications

Such perfect gratings enable new possibilities for controlling light, which has a range of applications, says Norris: “The new technology can be used, for instance, to build tiny diffraction gratings into integrated circuits with which optical signals for the internet can be sent, received and routed more efficiently.” Lassaline adds, “Generally, we can use such diffraction gratings to make highly miniaturized optical devices such as on-​chip micro-​lasers.” Those miniaturized devices, he says, range from ultrathin camera lenses to compact holograms with sharper images. They promise a broad impact in optical technologies such as futuristic smartphone cameras, biosensors, or autonomous vision for robots and self-​driving cars.

Tags: Professor
Share196Tweet123Send
Nano Digest

Nano Digest

  • Trending
  • Comments
  • Latest

Nanotechnology in Cancer

September 10, 2020
Emergence of 2.5D Materials for Futuristic Applications

Emergence of 2.5D Materials for Futuristic Applications

June 29, 2022
New research methods developed for nano and quantum materials. Nano Digest.

New research methods developed for nano and quantum materials

February 24, 2023
Designing Gas detecting devices using nanomaterials. Nano Digest.

Designing Gas detecting devices using nanomaterials

2
3D Printing Allows Precise Light Control for Color Composition. nano Digest.

3D Printing Allows Precise Light Control for Color Composition

2

Wearable sensor monitors health, administers drugs using saliva and tears

1
It’s Hard to Get Meds to the Lungs: Breathable Algae Offers a New Path.

It’s Hard to Get Meds to the Lungs: Breathable Algae Offers a New Path

May 7, 2025
New Bayesian Method Enables Rapid Detection of Quantum Dot Charge States

New Bayesian Method Enables Rapid Detection of Quantum Dot Charge States

May 2, 2025
Unique molecule may lead to smaller, more efficient computers

Unique molecule may lead to smaller, more efficient computers

May 2, 2025
Nanodigest

Copyright © 2009-2022 NanoDigest.in

Navigate Site

  • About
  • Advertise
  • Privacy Policy
  • Terms & Conditions
  • Contact

Follow Us

No Result
View All Result
  • Home
  • Biological Science & Technology
  • Chemical Science & Technology
  • Material Science & Technology
  • Physical Science & Technology
  • Innovations & Education
  • NanoDigest Exclusive
  • Nano Tv
  • —————————–
  • About
  • Advertise
  • Contact
  • Privacy Policy
  • Terms & Conditions

Copyright © 2009-2022 NanoDigest.in

Welcome Back!

Sign In with Google
OR

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Sign Up with Google
OR

Fill the forms below to register

*By registering into our website, you agree to the Terms & Conditions and Privacy Policy.
All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Cookie SettingsAccept All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.