• Latest
  • Trending
  • All

Multi-Dimensional Quantum Communications With Twisted Light Across Optical Fiber Networks

August 8, 2021
A building material that lives and stores carbon

A building material that lives and stores carbon

June 20, 2025
Researchers crack the code of body’s ancient immune defense.

Researchers crack the code of body’s ancient immune defense

June 19, 2025
Nanofibers yield stronger, tougher carbon fiber composites

Nanofibers yield stronger, tougher carbon fiber composites

June 18, 2025
The New Method for Formation of Chemical Bonds

The New Method for Formation of Chemical Bonds

June 18, 2025
Nanoneedles patch for painless Cancer Biopsies

Nanoneedles patch for painless Cancer Biopsies

June 17, 2025
Practising medicine on a lifelike silicone model

Practising medicine on a lifelike silicone model

June 16, 2025
Stabilising fleeting quantum states with light

Stabilising fleeting quantum states with light

June 9, 2025
New Printable, Injectable Materials for Advanced Medical Applications

New Printable, Injectable Materials for Advanced Medical Applications

May 29, 2025
Metal fleece: material for the batteries of the future

Metal fleece: material for the batteries of the future

May 24, 2025
AI and X-ray Vision to Gain Insight into Battery Electrolyte.

AI and X-ray Vision to Gain Insight into Battery Electrolyte

May 23, 2025
Mask users can now breathe easy on two counts

Mask users can now breathe easy on two counts

May 23, 2025
Boosting Cancer Treatment.

Boosting Cancer Treatment

May 23, 2025
  • About
  • Advertise
  • Privacy Policy
  • Terms & Conditions
  • Contact
Tuesday, June 24, 2025
  • Login
  • Register
Nanodigest
  • Home
  • Categories
    • Biological Science & Technology
    • Chemical Science & Technology
    • Material Science & Technology
    • Physical Science & Technology
    • Innovations & Education
  • NanoDigestExclusive
    AI and X-ray Vision to Gain Insight into Battery Electrolyte.

    AI and X-ray Vision to Gain Insight into Battery Electrolyte

    Emergence Quantum: a commercial quantum research 'special ops' team

    Emergence Quantum: a commercial quantum research ‘special ops’ team

    Couple satisfaction linked to fewer cognitive issues with chemo

    Ultrasound and Cilia to Clean Implanted Stents and Catheters

    Ultrasound and Cilia to Clean Implanted Stents and Catheters

    Celebrating Science

    Nobel prize for a New Way in Cancer Treatment

    Nobel prize for New Way in Cancer Treatment

    Simple to use device. Nano Digest.

    Simple to Use Device

    Nanofoam: Breakthrough in Material Design. Nano Digest.

    Nanofoam: Breakthrough in Material Design

    The Future of Solar Energy. Nano Digest.

    The Future of Solar Energy

    Trending Tags

    • 2D nanospace
    • 3D nano structures
    • Bacterial magnetic nanoparticle
    • Creation of nano technology
    • nano particles
    • Nano Technology
    • Nano Tv
    • nanomaterials
    • nanoparticles
    • Nanosciences
    • nanotubes
    • Nanowire
  • Nano TvYouTube
    Nanotechnology in Engineering – NANOENGINEERING | Nano Tv

    Nanotechnology in Engineering – NANOENGINEERING | Nano Tv

    nanotechnology, materials, graphene, nano digest, NanoTV

    Nanotechnology in Materials – GRAPHENE | Nano Tv

    Nanotechnology in Electronics - NANOELECTRONICS | Nano Tv, Nano Digest

    Nanotechnology in Electronics-NANOELECTRONICS | Nano Tv

    Nanotechnology in Medicine - NANOMEDICINE, Nano Tv, nano digest

    Nanotechnology in Medicine-NANOMEDICINE | Nano Tv

    Molecular Nanotechnology-NANOTECHNOLOGY & IMPLEMENTATIONS | Nano Tv, It deals with engineering nanoscale machines that operate on the molecular scale distinct from other areas of nanotechnology, such as nanoscale materials, nano digest

    Molecular Nanotechnology-NANOTECHNOLOGY & IMPLEMENTATIONS | Nano Tv

    What are Nanoparticles?, nano digest

    What are NANOPARTICLES?: Nano Tv

    THE ORIGIN & CHALLENGE by Richard Feynman | Nano Tv

    THE ORIGIN & CHALLENGE by Richard Feynman: Nano Tv

    Introduction, NANOTECHNOLOGY, nano digest, Nano Tv

    Introduction to NANOTECHNOLOGY | Nano Tv

  • ShopSale
No Result
View All Result
Nanodigest
No Result
View All Result
Home Material Science & Technology

Multi-Dimensional Quantum Communications With Twisted Light Across Optical Fiber Networks

by Nano Digest
August 8, 2021
in Material Science & Technology
0
491
SHARES
1.4k
VIEWS
Share on FacebookShare on TwitterShare on Whatsapp
Two photons are entangled, one in polarization and the other in orbital angular momentum — twisted light. By passing the polarization photon through the fiber and keeping the twisted light in air, multi-dimensional entanglement transport is possible even over single mode fiber. Credit: Wits University

New research done at the University of the Witwatersrand in Johannesburg, South Africa, and Huazhang University of Science and Technology in Wuhan, China, has exciting implications for secure data transfer across optical fiber networks. The team have demonstrated that multiple quantum patterns of twisted light can be transmitted across a conventional fiber link that, paradoxically, supports only one pattern. The implication is a new approach to realizing a future quantum network, harnessing multiple dimensions of entangled quantum light.

Science Advances today, published online the research by a team led by Professor Andrew Forbes from the School of Physics at Wits University in collaboration with a team lead by Professor Jian Wang at HUST. In their paper titled: Multi-dimensional entanglement transport through single-mode fiber, the researchers demonstrate a new paradigm for realizing a future quantum network. The team showed that multiple patterns of light are accessible after a communication link of conventional optical fiber, that paradoxically can only support a single pattern. The team achieved this quantum trick by engineering entanglement in two degrees of freedom of light, polarization, and pattern, passing the polarized photon down the fiber and accessing the many patterns with the other photon.

“In essence, the research introduces the concept of communicating across legacy fiber networks with multi-dimensional entangled states, bringing together the benefits of existing quantum communication with polarized photons with that of high-dimension communication using patterns of light,” says Forbes.

A new twist, a new paradigm

Present communication systems are very fast, but not fundamentally secure. To make them secure researchers use the laws of Nature for encoding by exploiting the quirky properties of the quantum world, such as in the case of the use of Quantum Key Distribution (QKD) for secure communication.

“Quantum” here refers to the spooky action at a distance so abhorred by Einstein: quantum entanglement. In the last few decades, quantum entanglement has been extensively explored for a variety of quantum information protocols, notably making communication more secure through QKD. Using so-called “qubits” (2D quantum states) the information capacity is limited but it is easy to get such states across fiber links using polarization as a degree of freedom for the encoding. The spatial pattern of light, its pattern, is another degree of freedom that has the benefit of high-dimensional encoding. There are many patterns to use, but unfortunately this requires custom fiber optical cable and so unsuitable to already existing networks. In the present work, the team have found a new way to balance these two extremes, by combining polarization qubits with high-dimensional spatial modes to create multi-dimensional hybrid quantum states.

“The trick was to twist the one photon in polarization and twist the other in pattern, forming “spirally light” that is entangled in two degrees of freedom,” says Forbes. “Since the polarization entangled photon has only one pattern it could be sent down the long-distance single-mode fiber (SMF), while the twisted light photon could be measured without the fiber, accessing multi-dimensional twisted patterns in the free-space. These twists carry orbital angular momentum (OAM), a promising candidate for encoding information.”

Overcoming the present challenges

Quantum communication with high-dimensional spatial modes (for example OAM modes) is promising but only possible in specially designed multi-mode fiber, which however, is greatly limited by mode (pattern) coupling noise. Single-mode fiber is free of this “pattern coupling” (which degrades entanglement) but can only be used for two-dimensional polarization entanglement.

“The novelty in the published work is the demonstration of multi-dimensional entanglement transport in conventional single-mode fiber. The light is twisted in two degrees of freedom: the polarization is twisted to form spirally light, and so is the pattern. This is referred to as spin-orbit coupling, here exploited for quantum communication,” says Forbes. “Each transmission is still only a qubit (2D) but there are an infinite number of them because of the infinite number of twisted patterns we could entangle in the other photon.”

The team demonstrated transfer of multi-dimensional entanglement states over 250 m of single-mode fiber, showing that an infinite number of two-dimensional subspaces could be realized. Each subspace could be used for sending information, or multiplexing information to multiple receivers.

“A consequence of this new approach is that the entire high-dimensional OAM Hilbert space can be accessed, but two dimensions at a time. In some sense it is a compromise between simple 2D approaches and true high-dimensional approaches,” says Forbes. Importantly, high-dimensional states are unsuitable for transmission over conventional fiber networks, whereas this new approach allows legacy networks to be used.

Tags: Professor
Share196Tweet123Send
Nano Digest

Nano Digest

  • Trending
  • Comments
  • Latest

Nanotechnology in Cancer

September 10, 2020
Emergence of 2.5D Materials for Futuristic Applications

Emergence of 2.5D Materials for Futuristic Applications

June 29, 2022
New research methods developed for nano and quantum materials. Nano Digest.

New research methods developed for nano and quantum materials

February 24, 2023
Designing Gas detecting devices using nanomaterials. Nano Digest.

Designing Gas detecting devices using nanomaterials

2
3D Printing Allows Precise Light Control for Color Composition. nano Digest.

3D Printing Allows Precise Light Control for Color Composition

2

Wearable sensor monitors health, administers drugs using saliva and tears

1
A building material that lives and stores carbon

A building material that lives and stores carbon

June 20, 2025
Researchers crack the code of body’s ancient immune defense.

Researchers crack the code of body’s ancient immune defense

June 19, 2025
Nanofibers yield stronger, tougher carbon fiber composites

Nanofibers yield stronger, tougher carbon fiber composites

June 18, 2025
Nanodigest

Copyright © 2009-2022 NanoDigest.in

Navigate Site

  • About
  • Advertise
  • Privacy Policy
  • Terms & Conditions
  • Contact

Follow Us

No Result
View All Result
  • Home
  • Biological Science & Technology
  • Chemical Science & Technology
  • Material Science & Technology
  • Physical Science & Technology
  • Innovations & Education
  • NanoDigest Exclusive
  • Nano Tv
  • —————————–
  • About
  • Advertise
  • Contact
  • Privacy Policy
  • Terms & Conditions

Copyright © 2009-2022 NanoDigest.in

Welcome Back!

Sign In with Google
OR

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Sign Up with Google
OR

Fill the forms below to register

*By registering into our website, you agree to the Terms & Conditions and Privacy Policy.
All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Cookie SettingsAccept All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.