• Latest
  • Trending
  • All
Researchers crack the code of body’s ancient immune defense.

Researchers crack the code of body’s ancient immune defense

June 19, 2025
A building material that lives and stores carbon

A building material that lives and stores carbon

June 20, 2025
Nanofibers yield stronger, tougher carbon fiber composites

Nanofibers yield stronger, tougher carbon fiber composites

June 18, 2025
The New Method for Formation of Chemical Bonds

The New Method for Formation of Chemical Bonds

June 18, 2025
Nanoneedles patch for painless Cancer Biopsies

Nanoneedles patch for painless Cancer Biopsies

June 17, 2025
Practising medicine on a lifelike silicone model

Practising medicine on a lifelike silicone model

June 16, 2025
Stabilising fleeting quantum states with light

Stabilising fleeting quantum states with light

June 9, 2025
New Printable, Injectable Materials for Advanced Medical Applications

New Printable, Injectable Materials for Advanced Medical Applications

May 29, 2025
Metal fleece: material for the batteries of the future

Metal fleece: material for the batteries of the future

May 24, 2025
AI and X-ray Vision to Gain Insight into Battery Electrolyte.

AI and X-ray Vision to Gain Insight into Battery Electrolyte

May 23, 2025
Mask users can now breathe easy on two counts

Mask users can now breathe easy on two counts

May 23, 2025
Boosting Cancer Treatment.

Boosting Cancer Treatment

May 23, 2025
Emergence Quantum: a commercial quantum research 'special ops' team

Emergence Quantum: a commercial quantum research ‘special ops’ team

May 22, 2025
  • About
  • Advertise
  • Privacy Policy
  • Terms & Conditions
  • Contact
Monday, June 23, 2025
  • Login
  • Register
Nanodigest
  • Home
  • Categories
    • Biological Science & Technology
    • Chemical Science & Technology
    • Material Science & Technology
    • Physical Science & Technology
    • Innovations & Education
  • NanoDigestExclusive
    AI and X-ray Vision to Gain Insight into Battery Electrolyte.

    AI and X-ray Vision to Gain Insight into Battery Electrolyte

    Emergence Quantum: a commercial quantum research 'special ops' team

    Emergence Quantum: a commercial quantum research ‘special ops’ team

    Couple satisfaction linked to fewer cognitive issues with chemo

    Ultrasound and Cilia to Clean Implanted Stents and Catheters

    Ultrasound and Cilia to Clean Implanted Stents and Catheters

    Celebrating Science

    Nobel prize for a New Way in Cancer Treatment

    Nobel prize for New Way in Cancer Treatment

    Simple to use device. Nano Digest.

    Simple to Use Device

    Nanofoam: Breakthrough in Material Design. Nano Digest.

    Nanofoam: Breakthrough in Material Design

    The Future of Solar Energy. Nano Digest.

    The Future of Solar Energy

    Trending Tags

    • 2D nanospace
    • 3D nano structures
    • Bacterial magnetic nanoparticle
    • Creation of nano technology
    • nano particles
    • Nano Technology
    • Nano Tv
    • nanomaterials
    • nanoparticles
    • Nanosciences
    • nanotubes
    • Nanowire
  • Nano TvYouTube
    Nanotechnology in Engineering – NANOENGINEERING | Nano Tv

    Nanotechnology in Engineering – NANOENGINEERING | Nano Tv

    nanotechnology, materials, graphene, nano digest, NanoTV

    Nanotechnology in Materials – GRAPHENE | Nano Tv

    Nanotechnology in Electronics - NANOELECTRONICS | Nano Tv, Nano Digest

    Nanotechnology in Electronics-NANOELECTRONICS | Nano Tv

    Nanotechnology in Medicine - NANOMEDICINE, Nano Tv, nano digest

    Nanotechnology in Medicine-NANOMEDICINE | Nano Tv

    Molecular Nanotechnology-NANOTECHNOLOGY & IMPLEMENTATIONS | Nano Tv, It deals with engineering nanoscale machines that operate on the molecular scale distinct from other areas of nanotechnology, such as nanoscale materials, nano digest

    Molecular Nanotechnology-NANOTECHNOLOGY & IMPLEMENTATIONS | Nano Tv

    What are Nanoparticles?, nano digest

    What are NANOPARTICLES?: Nano Tv

    THE ORIGIN & CHALLENGE by Richard Feynman | Nano Tv

    THE ORIGIN & CHALLENGE by Richard Feynman: Nano Tv

    Introduction, NANOTECHNOLOGY, nano digest, Nano Tv

    Introduction to NANOTECHNOLOGY | Nano Tv

  • ShopSale
No Result
View All Result
Nanodigest
No Result
View All Result
Home Biological Science & Technology

Researchers crack the code of body’s ancient immune defense

by Nano Digest
June 19, 2025
in Biological Science & Technology
0
Researchers crack the code of body’s ancient immune defense.

(Left) Pre-ignition (below the activation threshold) Only a handful of immune “tags” (C3b proteins) cover the nanoparticle, so it barely sticks to the white membrane—too few contact points means the immune cell simply can’t grab on. (Right) Post-ignition (above the activation threshold). The nanoparticle is now densely coated with C3b tags, and the immune-cell membrane reaches out with many matching receptors. Dozens of little “hooks” latch on at once, creating a strong, multivalent grip that pulls the particle in for engulfment. Courtesy: (Image: Ravi Radhakrishnan), University of Pennsylvania.

491
SHARES
1.4k
VIEWS
Share on FacebookShare on TwitterShare on Whatsapp

Researchers crack the code of body’s ancient immune defense

A collaborative team from Penn Medicine and Penn Engineering have  unraveled the mathematics of a 500-million-year-old protein network that ‘decides’ which foreign materials are friend or foe.

A collaborative team from the School of Engineering and Applied Science and the Perelman School of Medicine have unraveled the mathematics of a 500-million-year-old protein network that acts like the body’s bouncer, “deciding” which foreign materials get degraded by immune cells and which are allowed entry.

They identified a molecular tipping point known as the “critical percolation threshold,” which is based on how densely complement-binding sites are spaced on the surfaces of the model invader they engineered.

Their findings pave the way for accelerating drug discovery and reducing adverse reactions from therapeutics.

How does your body distinguish friendly visitors, like medications and medical devices, from dangerous invaders such as viruses and other infectious agents? The answer lies in a protein network dating back half a billion years—before humans diverged from sea urchins, notes Jake Brenner, a physician-scientist at the University of Pennsylvania.

“The complement system is perhaps the oldest-known part of our extracellular immune system,” says Brenner. “It plays a crucial role in identifying foreign materials like microbes, medical devices, or new drugs—particularly the larger ones like in the COVID vaccine.”

The complement system can, however, simultaneously play friend and foe, offering protection with one hand while backhanding the body with the other. In some cases, this ancient network can significantly exacerbate conditions like stroke by targeting the body’s own tissues. As Brenner explains, leaking blood vessels allow complement proteins to target brain tissue, causing the immune system to mistakenly launch an attack on the body’s own cells and worsen patient outcomes.

Now, using a combination of wet-lab experimentation, coupled differential equations, and computational-based modeling and simulations, an interdisciplinary team from the School of Engineering and Applied Science and the Perelman School of Medicine has decrypted the mathematical language behind the complement network’s “decision” to attack.

Reporting their findings in Cell, the team identifies a molecular tipping point known as the critical percolation threshold, which is based on how densely complement-binding sites are spaced on the surfaces of the model invader they engineered. If spacing between binding sites is too wide—landing above a threshold—complement activation fizzles out; below it, complement network ignites, a chain reaction of immune agent recruitment which spreads like wildfire.

“This discovery enables us to design therapeutics the way you would design a car or a spaceship—using the principles of physics to guide how the immune system will respond—rather than relying on trial and error,” says Brenner, who is co-senior author of the study.

Simplifying complexity

While many researchers attempt to divide complex biological systems into smaller and smaller components—like cells, organelles, and molecules—the team approached the system as a set of simpler mathematical values abiding by parameters like density, distance, and speed.

“Not every aspect of biology can be described that way,” says co-senior author Ravi Radhakrishnan, bioengineering chair and professor in Penn Engineering. “The complement pathway is fairly ubiquitous across many species and has been preserved through a very long evolutionary time, so we wanted to describe the process using a theory that’s universal.”

First, a team from Penn Medicine, led by materials scientist Jacob Myerson and nanomedicine research associate Zhicheng Wang, precisely engineered liposomes—tiny, nanoscale fat particles often used as a drug-delivery platform—by studding them with immune-system binding sites. They generated dozens of liposome batches, each with a precisely tuned density of binding sites, and then observed how complement proteins bound and spread in vitro.

The team then analyzed the experimental data with mathematical tools to assess the binding spread dynamics and immune element recruitment rates and used computational tools to visualize and simulate the reactions to identify when thresholds were being approached.

What they observed in the lab—that closer spacing of proteins ramped up immune activity—became much clearer when viewed through a mathematical lens.

The team’s approach drew from complexity science, a field that uses math and physics to study systems with many moving parts. By stripping away the biological specifics, they were able to identify fundamental patterns—like tipping points and phase changes—that explain how the immune system decides when to strike.

“We took that initial observation and then tried to control precisely how closely spaced proteins were on the surface,” Myerson says. “We found that there’s this threshold spacing that’s really the key to understanding how this complement mechanism can turn on or off in response to surface structure.”

“If you look only at the molecular details, it’s easy to think that every system is unique,” adds Radhakrishnan. “But when you model complement mathematically, you see a pattern emerge, not unlike how forest fires spread, or hot water percolates through coffee grounds.”

The process of percolation

While much of the research on percolation took place in the 1950s, in the context of petroleum extraction, the physics matched those the researchers observed in complement proteins. “Our system’s dynamics map entirely onto the equations of percolation,” says Myerson.

Sahil Kulkarni, a doctoral student in Radhakrishnan’s lab, not only found that the mathematics of percolation predicted the experimental results that Brenner and Myerson’s teams observed, but that complement activation follows a discrete series of steps.

First, an “ignition event” occurs, in which a foreign particle makes contact with the immune system. “It’s like an ember falling in a forest,” says Kulkarni. “If the trees are spaced too far apart, the fire doesn’t spread. But if they’re close together, the whole forest burns.”

Just like some trees in a forest fire only get singed, percolation theory in the context of biology predicts that not all foreign particles must be fully coated in complement proteins to trigger an immune response. “Some particles are fully engulfed, while others get just a few proteins,” Kulkarni explains.

It might seem suboptimal, but that patchiness is likely a feature, not a bug—and one of the chief reasons that evolution selected percolation as the method for activating complement in the first place. It allows the immune system to respond efficiently by coating only “enough” foreign bodies for recognition without overexpending resources or indiscriminately attacking every particle.

Unlike ice formation, which spreads predictably and irreversibly from a single growing crystal, percolation allows for more varied, flexible responses, even ones that can even be reversed. “Because the particles aren’t uniformly coated, the immune system can walk it back,” adds Kulkarni.

It’s also energy efficient. “Producing complement proteins is expensive,” says Radhakrishnan. “Percolation ensures you use only what you need.”

The next steps along the discovery cascade

Looking ahead, the team is excited to apply their mathematical framework to other complex biological networks such as the clotting cascade and antibody interactions, which rely on similar interactions and dynamics.

“We’re particularly interested in applying these methods to the coagulation cascade and antibody interactions,” says Brenner. “These systems, like complement, involve dense networks of proteins making split-second decisions, and we suspect they may follow similar mathematical rules.”

Additionally, their findings hint at a blueprint for designing safer nanomedicines, Kulkarni notes, explaining how formulation scientists can use this to fine-tune nanoparticles—adjusting protein spacing to avoid triggering complement. This could help reduce immune reactions in lipid-based vaccines, mRNA therapies, and CAR T treatments, where complement activation poses ongoing challenges.

“These kinds of problems live at the intersection of fields,” says Myerson. “You need science and engineering know-how to build precision systems, complexity science to reduce 100s of equations modeling each protein-protein interaction to an essential three, and medical professionals who can see the clinical relevance. Investing in team science accelerated these outcomes.”

Source: University of Pennsylvania

Tags: Biologicalimmune cellsimmune systemliposomesmolecularnanomedicinesnanoscalePenn state
Share196Tweet123Send
Nano Digest

Nano Digest

  • Trending
  • Comments
  • Latest

Nanotechnology in Cancer

September 10, 2020
Emergence of 2.5D Materials for Futuristic Applications

Emergence of 2.5D Materials for Futuristic Applications

June 29, 2022
New research methods developed for nano and quantum materials. Nano Digest.

New research methods developed for nano and quantum materials

February 24, 2023
Designing Gas detecting devices using nanomaterials. Nano Digest.

Designing Gas detecting devices using nanomaterials

2
3D Printing Allows Precise Light Control for Color Composition. nano Digest.

3D Printing Allows Precise Light Control for Color Composition

2

Wearable sensor monitors health, administers drugs using saliva and tears

1
A building material that lives and stores carbon

A building material that lives and stores carbon

June 20, 2025
Researchers crack the code of body’s ancient immune defense.

Researchers crack the code of body’s ancient immune defense

June 19, 2025
Nanofibers yield stronger, tougher carbon fiber composites

Nanofibers yield stronger, tougher carbon fiber composites

June 18, 2025
Nanodigest

Copyright © 2009-2022 NanoDigest.in

Navigate Site

  • About
  • Advertise
  • Privacy Policy
  • Terms & Conditions
  • Contact

Follow Us

No Result
View All Result
  • Home
  • Biological Science & Technology
  • Chemical Science & Technology
  • Material Science & Technology
  • Physical Science & Technology
  • Innovations & Education
  • NanoDigest Exclusive
  • Nano Tv
  • —————————–
  • About
  • Advertise
  • Contact
  • Privacy Policy
  • Terms & Conditions

Copyright © 2009-2022 NanoDigest.in

Welcome Back!

Sign In with Google
OR

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Sign Up with Google
OR

Fill the forms below to register

*By registering into our website, you agree to the Terms & Conditions and Privacy Policy.
All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Cookie SettingsAccept All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.