• Latest
  • Trending
  • All

New method produces ultra-thin membranes

August 20, 2025
Students develop novel multi-metal 3D printing process.

Students develop novel multi-metal 3D printing process

September 4, 2025
Geometry revealed at the heart of quantum matter 

Geometry revealed at the heart of quantum matter

September 2, 2025
Wrinkles in atomically thin materials unlock ultra efficient electronics

Wrinkles in Atomically Thin Materials Unlock Ultra efficient Electronics

August 26, 2025
Researchers track the motion of a single electron during a chemical reaction

Researchers track the motion of a single electron during a chemical reaction

August 21, 2025
BREATHE NEW LIFE INTO UNUSED VACCINES

BREATHE NEW LIFE INTO UNUSED VACCINES

August 13, 2025
Illuminate previously unseen properties of materials

Illuminate previously unseen properties of materials

August 13, 2025
AI helps chemists develop tougher plastics.

AI helps chemists develop tougher plastics

August 9, 2025
Molecules in the Spotlight

Molecules in the Spotlight

August 8, 2025
Ultra-fast, in-line atomic force microscope (AFM),

New Ultra-fast, in-line Atomic Force Microscope (AFM)

August 8, 2025
Friction which cools

Friction which cools

August 7, 2025
Left-handed or right-handed? Nanostructures identified by light.

Left-handed or right-handed? Nanostructures identified by light

August 5, 2025
New possibilities for scanning tunnelling microscopy

New Possibilities for Scanning Tunnelling Microscopy

July 21, 2025
  • About
  • Advertise
  • Privacy Policy
  • Terms & Conditions
  • Contact
Tuesday, October 14, 2025
  • Login
  • Register
Nanodigest
  • Home
  • Categories
    • Biological Science & Technology
    • Chemical Science & Technology
    • Material Science & Technology
    • Physical Science & Technology
    • Innovations & Education
  • NanoDigestExclusive
    Students develop novel multi-metal 3D printing process.

    Students develop novel multi-metal 3D printing process

    Ultra-fast, in-line atomic force microscope (AFM),

    New Ultra-fast, in-line Atomic Force Microscope (AFM)

    Sydney scholar Richard Payne honoured.

    Sydney scholar Richard Payne honoured

    AI and X-ray Vision to Gain Insight into Battery Electrolyte.

    AI and X-ray Vision to Gain Insight into Battery Electrolyte

    Emergence Quantum: a commercial quantum research 'special ops' team

    Emergence Quantum: a commercial quantum research ‘special ops’ team

    Couple satisfaction linked to fewer cognitive issues with chemo

    Ultrasound and Cilia to Clean Implanted Stents and Catheters

    Ultrasound and Cilia to Clean Implanted Stents and Catheters

    Celebrating Science

    Nobel prize for a New Way in Cancer Treatment

    Nobel prize for New Way in Cancer Treatment

    Trending Tags

    • 2D nanospace
    • 3D nano structures
    • Bacterial magnetic nanoparticle
    • Creation of nano technology
    • nano particles
    • Nano Technology
    • Nano Tv
    • nanomaterials
    • nanoparticles
    • Nanosciences
    • nanotubes
    • Nanowire
  • Nano TvYouTube
    Nanotechnology in Engineering – NANOENGINEERING | Nano Tv

    Nanotechnology in Engineering – NANOENGINEERING | Nano Tv

    nanotechnology, materials, graphene, nano digest, NanoTV

    Nanotechnology in Materials – GRAPHENE | Nano Tv

    Nanotechnology in Electronics - NANOELECTRONICS | Nano Tv, Nano Digest

    Nanotechnology in Electronics-NANOELECTRONICS | Nano Tv

    Nanotechnology in Medicine - NANOMEDICINE, Nano Tv, nano digest

    Nanotechnology in Medicine-NANOMEDICINE | Nano Tv

    Molecular Nanotechnology-NANOTECHNOLOGY & IMPLEMENTATIONS | Nano Tv, It deals with engineering nanoscale machines that operate on the molecular scale distinct from other areas of nanotechnology, such as nanoscale materials, nano digest

    Molecular Nanotechnology-NANOTECHNOLOGY & IMPLEMENTATIONS | Nano Tv

    What are Nanoparticles?, nano digest

    What are NANOPARTICLES?: Nano Tv

    THE ORIGIN & CHALLENGE by Richard Feynman | Nano Tv

    THE ORIGIN & CHALLENGE by Richard Feynman: Nano Tv

    Introduction, NANOTECHNOLOGY, nano digest, Nano Tv

    Introduction to NANOTECHNOLOGY | Nano Tv

  • ShopSale
No Result
View All Result
Nanodigest
No Result
View All Result
Home Physical Science & Technology

New method produces ultra-thin membranes

Nanomanufacturing Breakthrough Could Revolutionize Night Vision Technology, Other Fields

by Nano Digest
August 20, 2025
in Physical Science & Technology
0
497
SHARES
1.4k
VIEWS
Share on FacebookShare on TwitterShare on Whatsapp

New method produces ultra-thin membranes 

Nanomanufacturing Breakthrough Could Revolutionize Night Vision Technology, Other Fields

New method produces ultra-thin membranes with record-breaking sensitivity, promising to transform thermal imaging and night vision technology

Rensselaer Polytechnic Institute (RPI) scientists played a pivotal role in the development of a new manufacturing technique that could revolutionize infrared detection technology, making thermal imaging devices smaller, more accurate and far more affordable.

The research, published recently in Nature, introduces an innovative “atomic lift-off” method that creates ultra-thin crystalline membranes capable of detecting infrared radiation with high sensitivity, and without the need for expensive and bulky cooling systems.

Prior efforts to mass-produce the fragile membranes had been stymied by the difficulty of keeping them intact while removing them from their manufacturing substrates. The team, which in addition to RPI included researchers from MIT and several other universities, were able to surmount that problem and achieve high-precision exfoliation of the membranes.

“This method offers an approach to manufacturing cooling-free detectors that can cover the full far-infrared spectrum, marking a notable advancement in detector technology,” the researchers write.

Ultra-thin layers of semiconducting crystal material are typically “grown” atop a substrate with a similar crystal structure. But removing the ultra-thin films from the substrates has proven to be a formidable challenge. The films often bond too tightly to the substrates, making them virtually impossible to remove without damaging their delicate structure.

One approach has been to insert a sacrificial release layer as a buffer between the film and the substrate to facilitate its removal, acting like the Teflon layer of a non-stick pan. But those efforts add a great deal of complexity and cost to the process.

Yunfeng Shi, Ph.D., a professor in RPI’s School of Engineering and one of the lead authors on the paper, demonstrated with his colleagues that the process can be done without a buffer layer if the material used to make the ultra-thin film contains lead. Shi’s group carried out density functional theory calculations showing that lead atoms reduce charge transfer across the film-substrate interface, weaking interfacial bonds and facilitating atomic lift-off.

“We demonstrate that the release layer used in conventional exfoliation is in fact not necessary for certain systems,” Shi said. “This is paradigm changing.”

Using this technique, the researchers were able to bulk-produce thin films of a substance called PMN-PT, a pyroelectric material that generates electric currents in response to heat. They were able to achieve record levels of thermal sensitivity, made possible because they were able to shrink the membranes down to a thickness of just 10 nanometers.

In addition to night vision technology, the improvement in thermal sensitivity could lead to advances in biomedical and astronomical imaging technology, or in realms like autonomous driving, where it could be used to improve collision detection in low-light situations. The researchers also say the technique could be used to improve many different types of crystalline oxide membranes, not just infrared-detecting ones.

“This breakthrough underscores the transformative power of combining advanced materials synthesis and manufacturing with state-of-the-art computation,” said Shekhar Garde, Ph.D., Thomas R. Farino Jr. ’67 and Patricia E. Farino Dean of the School of Engineering. “Uniting experimental ingenuity with high-fidelity modeling through interdisciplinary collaborations, Yunfeng Shi and colleagues have demonstrated what has eluded experts for years. I look forward to the many practical applications that will come from this advance.”

Source: Rensselaer Polytechnic Institute

Tags: crystallinemembranesMITRPIsemiconductingultra-thin
Share199Tweet124Send
Nano Digest

Nano Digest

  • Trending
  • Comments
  • Latest

Nanotechnology in Cancer

September 10, 2020
Emergence of 2.5D Materials for Futuristic Applications

Emergence of 2.5D Materials for Futuristic Applications

June 29, 2022
New research methods developed for nano and quantum materials. Nano Digest.

New research methods developed for nano and quantum materials

February 24, 2023
Designing Gas detecting devices using nanomaterials. Nano Digest.

Designing Gas detecting devices using nanomaterials

2
3D Printing Allows Precise Light Control for Color Composition. nano Digest.

3D Printing Allows Precise Light Control for Color Composition

2

Wearable sensor monitors health, administers drugs using saliva and tears

1
Students develop novel multi-metal 3D printing process.

Students develop novel multi-metal 3D printing process

September 4, 2025
Geometry revealed at the heart of quantum matter 

Geometry revealed at the heart of quantum matter

September 2, 2025
Wrinkles in atomically thin materials unlock ultra efficient electronics

Wrinkles in Atomically Thin Materials Unlock Ultra efficient Electronics

August 26, 2025
Nanodigest

Copyright © 2009-2022 NanoDigest.in

Navigate Site

  • About
  • Advertise
  • Privacy Policy
  • Terms & Conditions
  • Contact

Follow Us

No Result
View All Result
  • Home
  • Biological Science & Technology
  • Chemical Science & Technology
  • Material Science & Technology
  • Physical Science & Technology
  • Innovations & Education
  • NanoDigest Exclusive
  • Nano Tv
  • —————————–
  • About
  • Advertise
  • Contact
  • Privacy Policy
  • Terms & Conditions

Copyright © 2009-2022 NanoDigest.in

Welcome Back!

Sign In with Google
OR

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Sign Up with Google
OR

Fill the forms below to register

*By registering into our website, you agree to the Terms & Conditions and Privacy Policy.
All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Cookie SettingsAccept All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.