• Latest
  • Trending
  • All

Dirac Electrons Come Back to Life in Magic-Angle Graphene

August 8, 2021
New Printable, Injectable Materials for Advanced Medical Applications

New Printable, Injectable Materials for Advanced Medical Applications

May 29, 2025
Metal fleece: material for the batteries of the future

Metal fleece: material for the batteries of the future

May 24, 2025
AI and X-ray Vision to Gain Insight into Battery Electrolyte.

AI and X-ray Vision to Gain Insight into Battery Electrolyte

May 23, 2025
Mask users can now breathe easy on two counts

Mask users can now breathe easy on two counts

May 23, 2025
Boosting Cancer Treatment.

Boosting Cancer Treatment

May 23, 2025
Emergence Quantum: a commercial quantum research 'special ops' team

Emergence Quantum: a commercial quantum research ‘special ops’ team

May 22, 2025
Sugar-coated nanotherapy dramatically improves neuron survival in Alzheimer’s model.

Sugar-coated nanotherapy improves neuron survival

May 15, 2025
Quantum simulation of chemical dynamics achieved for first time

Quantum simulation of chemical dynamics achieved for first time

May 15, 2025
The mysterious chemical world inside nanopores.

The Mysterious Chemical World Inside Nanopores

May 13, 2025
Stability solution brings unique form of carbon closer to practical application.

Stability solution brings unique form of carbon closer to practical application

May 10, 2025
It’s Hard to Get Meds to the Lungs: Breathable Algae Offers a New Path.

It’s Hard to Get Meds to the Lungs: Breathable Algae Offers a New Path

May 7, 2025
New Bayesian Method Enables Rapid Detection of Quantum Dot Charge States

New Bayesian Method Enables Rapid Detection of Quantum Dot Charge States

May 2, 2025
  • About
  • Advertise
  • Privacy Policy
  • Terms & Conditions
  • Contact
Sunday, June 1, 2025
  • Login
  • Register
Nanodigest
  • Home
  • Categories
    • Biological Science & Technology
    • Chemical Science & Technology
    • Material Science & Technology
    • Physical Science & Technology
    • Innovations & Education
  • NanoDigestExclusive
    AI and X-ray Vision to Gain Insight into Battery Electrolyte.

    AI and X-ray Vision to Gain Insight into Battery Electrolyte

    Emergence Quantum: a commercial quantum research 'special ops' team

    Emergence Quantum: a commercial quantum research ‘special ops’ team

    Couple satisfaction linked to fewer cognitive issues with chemo

    Ultrasound and Cilia to Clean Implanted Stents and Catheters

    Ultrasound and Cilia to Clean Implanted Stents and Catheters

    Celebrating Science

    Nobel prize for a New Way in Cancer Treatment

    Nobel prize for New Way in Cancer Treatment

    Simple to use device. Nano Digest.

    Simple to Use Device

    Nanofoam: Breakthrough in Material Design. Nano Digest.

    Nanofoam: Breakthrough in Material Design

    The Future of Solar Energy. Nano Digest.

    The Future of Solar Energy

    Trending Tags

    • 2D nanospace
    • 3D nano structures
    • Bacterial magnetic nanoparticle
    • Creation of nano technology
    • nano particles
    • Nano Technology
    • Nano Tv
    • nanomaterials
    • nanoparticles
    • Nanosciences
    • nanotubes
    • Nanowire
  • Nano TvYouTube
    Nanotechnology in Engineering – NANOENGINEERING | Nano Tv

    Nanotechnology in Engineering – NANOENGINEERING | Nano Tv

    nanotechnology, materials, graphene, nano digest, NanoTV

    Nanotechnology in Materials – GRAPHENE | Nano Tv

    Nanotechnology in Electronics - NANOELECTRONICS | Nano Tv, Nano Digest

    Nanotechnology in Electronics-NANOELECTRONICS | Nano Tv

    Nanotechnology in Medicine - NANOMEDICINE, Nano Tv, nano digest

    Nanotechnology in Medicine-NANOMEDICINE | Nano Tv

    Molecular Nanotechnology-NANOTECHNOLOGY & IMPLEMENTATIONS | Nano Tv, It deals with engineering nanoscale machines that operate on the molecular scale distinct from other areas of nanotechnology, such as nanoscale materials, nano digest

    Molecular Nanotechnology-NANOTECHNOLOGY & IMPLEMENTATIONS | Nano Tv

    What are Nanoparticles?, nano digest

    What are NANOPARTICLES?: Nano Tv

    THE ORIGIN & CHALLENGE by Richard Feynman | Nano Tv

    THE ORIGIN & CHALLENGE by Richard Feynman: Nano Tv

    Introduction, NANOTECHNOLOGY, nano digest, Nano Tv

    Introduction to NANOTECHNOLOGY | Nano Tv

  • ShopSale
No Result
View All Result
Nanodigest
No Result
View All Result
Home Material Science & Technology

Dirac Electrons Come Back to Life in Magic-Angle Graphene

by Nano Digest
August 8, 2021
in Material Science & Technology
0
491
SHARES
1.4k
VIEWS
Share on FacebookShare on TwitterShare on Whatsapp
The symmetry-breaking phase transition in magic-angle graphene. The four ‘flavors’ of Dirac electrons filling their energy levels are represented by four ‘liquids’ filling conical glasses. Credit: Weizmann Institute of Science

Now a team of researchers from the Weizmann Institute of Science led by Prof. Shahal Ilani of the Condensed Matter Physics Department, in collaboration with Prof. Pablo Jarillo-Herrero’s group at MIT, have discovered that these quantum phases descend from a previously unknown high-energy “parent state,” with an unusual breaking of symmetry.

Graphene is a flat crystal of carbon, just one atom thick. When two sheets of this material are placed on top of each other, misaligned at small angle, a periodic “moiré” pattern appears. This pattern provides an artificial lattice for the electrons in the material. In this twisted bilayer system the electrons come in four “flavors”: spins “up” or “down,” combined with two “valleys” that originate in the graphene’s hexagonal lattice. As a result, each moiré site can hold up to four electrons, one of each flavor.

While researchers already knew that the system behaves as a simple insulator when all the moiré sites are completely full (four electrons per site), Jarillo-Herrero and his colleagues discovered to their surprise, in 2018, that at a specific “magic” angle, the twisted system also becomes insulating at other integer fillings (two or three electrons per moiré site). This behavior, exhibited by magic-angle twisted bilayer graphene (MATBG), cannot be explained by single particle physics, and is often described as a “correlated Mott insulator.” Even more surprising was the discovery of exotic superconductivity close to these fillings. These findings led to a flurry of research activity aiming to answer the big question: what is the nature of the new exotic states discovered in MATBG and similar twisted systems?

Imaging magic-angle graphene electrons with a carbon nanotube detector

The Weizmann team set out to understand how interacting electrons behave in MATBG using a unique type of microscope that utilizes a carbon nanotube single-electron transistor, positioned at the edge of a scanning probe cantilever. This instrument can image, in real space, the electric potential produced by electrons in a material with extreme sensitivity.

“Using this tool, we could image for the first time the ‘compressibility’ of the electrons in this system – that is, how hard it is to squeeze additional electrons into a given point in space,” explains Ilani. “Roughly speaking, the compressibility of electrons reflects the phase they are in: In an insulator, electrons are incompressible, whereas in a metal they are highly compressible.”

Compressibility also reveals the “effective mass” of electrons. For example, in regular graphene the electrons are extremely “light,” and thus behave like independent particles that practically ignore the presence of their fellow electrons. In magic-angle graphene, on the other hand, electrons are believed to be extremely “heavy” and their behavior is thus dominated by interactions with other electrons ‒ a fact that many researchers attribute to the exotic phases found in this material. The Weizmann team therefore expected the compressibility to show a very simple pattern as a function of electron filling: interchanging between a highly-compressible metal with heavy electrons and incompressible Mott insulators that appear at each integer moiré lattice filling.

To their surprise, they observed a vastly different pattern. Instead of a symmetric transition from metal to insulator and back to metal, they observed a sharp, asymmetric jump in the electronic compressibility near the integer fillings.

“This means that the nature of the carriers before and after this transition is markedly different,” says study lead author Uri Zondiner. “Before the transition the carriers are extremely heavy, and after it they seem to be extremely light, reminiscent of the ‘Dirac electrons’ that are present in graphene.”

The same behavior was seen to repeat near every integer filling, where heavy carriers abruptly gave way and light Dirac-like electrons re-emerged.

But how can such an abrupt change in the nature of the carriers be understood? To address this question, the team worked together with Weizmann theorists Profs. Erez Berg, Yuval Oreg and Ady Stern, and Dr. Raquel Quiroez; as well as Prof. Felix von-Oppen of Freie Universität Berlin. They constructed a simple model, revealing that electrons fill the energy bands in MATBG in a highly unusual “Sisyphean” manner: when electrons start filling from the “Dirac point” (the point at which the valence and conduction bands just touch each other), they behave normally, being distributed equally among the four possible flavors. “However, when the filling nears that of an integer number of electrons per moiré superlattice site, a dramatic phase transition occurs,” explains study lead author Asaf Rozen. “In this transition, one flavor ‘grabs’ all the carriers from its peers, ‘resetting’ them back to the charge-neutral Dirac point.”

“Left with no electrons, the three remaining flavors need to start refilling again from scratch. They do so until another phase transition occurs, where this time one of the remaining three flavors grabs all the carriers from its peers, pushing them back to square one. Electrons thus need to climb a mountain like Sisyphus, being constantly pushed back to the starting point in which they revert to the behavior of light Dirac electrons,” says Rozen. While this system is in a highly symmetric state at low carrier fillings, in which all the electronic flavors are equally populated, with further filling it experiences a cascade of symmetry-breaking phase transitions that repeatedly reduce its symmetry.

A “parent state”

“What is most surprising is that the phase transitions and Dirac revivals that we discovered appear at temperatures well above the onset of the superconducting and correlated insulating states observed so far,” says Ilani. “This indicates that the broken symmetry state we have seen is, in fact, the ‘parent state’ out of which the more fragile superconducting and correlated insulating ground states emerge.”

The peculiar way in which the symmetry is broken has important implications for the nature of the insulating and superconducting states in this twisted system.

“For example, it is well known that stronger superconductivity arises when electrons are heavier. Our experiment, however, demonstrates the exact opposite: superconductivity appears in this magic-angle graphene system after a phase transition has revived the light Dirac electrons. How this happens, and what it tells us about the nature of superconductivity in this system compared to other more conventional forms of superconductivity remain interesting open questions,” says Zondiner.

A similar cascade of phase transitions was reported in another paper published in the same Nature issue by Prof. Ali Yazdani and colleagues at Princeton University. “The Princeton team studied MATBG using a completely different experimental technique, based on a highly-sensitive scanning tunneling microscope, so it is very reassuring to see that complementary techniques lead to analogous observations,” says Ilani.

The Weizmann and MIT researchers say they will now use their scanning nanotube single-electron-transistor platform to answer these and other basic questions about electrons in various twisted-layer systems: What is the relationship between the compressibility of electrons and their apparent transport properties? What is the nature of the correlated states that form in these systems at low temperatures? And what are the fundamental quasiparticles that make up these states?

Tags: Professor
Share196Tweet123Send
Nano Digest

Nano Digest

  • Trending
  • Comments
  • Latest

Nanotechnology in Cancer

September 10, 2020
Emergence of 2.5D Materials for Futuristic Applications

Emergence of 2.5D Materials for Futuristic Applications

June 29, 2022
New research methods developed for nano and quantum materials. Nano Digest.

New research methods developed for nano and quantum materials

February 24, 2023
Designing Gas detecting devices using nanomaterials. Nano Digest.

Designing Gas detecting devices using nanomaterials

2
3D Printing Allows Precise Light Control for Color Composition. nano Digest.

3D Printing Allows Precise Light Control for Color Composition

2

Wearable sensor monitors health, administers drugs using saliva and tears

1
New Printable, Injectable Materials for Advanced Medical Applications

New Printable, Injectable Materials for Advanced Medical Applications

May 29, 2025
Metal fleece: material for the batteries of the future

Metal fleece: material for the batteries of the future

May 24, 2025
AI and X-ray Vision to Gain Insight into Battery Electrolyte.

AI and X-ray Vision to Gain Insight into Battery Electrolyte

May 23, 2025
Nanodigest

Copyright © 2009-2022 NanoDigest.in

Navigate Site

  • About
  • Advertise
  • Privacy Policy
  • Terms & Conditions
  • Contact

Follow Us

No Result
View All Result
  • Home
  • Biological Science & Technology
  • Chemical Science & Technology
  • Material Science & Technology
  • Physical Science & Technology
  • Innovations & Education
  • NanoDigest Exclusive
  • Nano Tv
  • —————————–
  • About
  • Advertise
  • Contact
  • Privacy Policy
  • Terms & Conditions

Copyright © 2009-2022 NanoDigest.in

Welcome Back!

Sign In with Google
OR

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Sign Up with Google
OR

Fill the forms below to register

*By registering into our website, you agree to the Terms & Conditions and Privacy Policy.
All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Cookie SettingsAccept All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.