• Latest
  • Trending
  • All
Reduce errors, Quantum Computers, nano digest, Dr Grimsmo

Reduce errors across Quantum Computers

September 26, 2022
New Printable, Injectable Materials for Advanced Medical Applications

New Printable, Injectable Materials for Advanced Medical Applications

May 29, 2025
Metal fleece: material for the batteries of the future

Metal fleece: material for the batteries of the future

May 24, 2025
AI and X-ray Vision to Gain Insight into Battery Electrolyte.

AI and X-ray Vision to Gain Insight into Battery Electrolyte

May 23, 2025
Mask users can now breathe easy on two counts

Mask users can now breathe easy on two counts

May 23, 2025
Boosting Cancer Treatment.

Boosting Cancer Treatment

May 23, 2025
Emergence Quantum: a commercial quantum research 'special ops' team

Emergence Quantum: a commercial quantum research ‘special ops’ team

May 22, 2025
Sugar-coated nanotherapy dramatically improves neuron survival in Alzheimer’s model.

Sugar-coated nanotherapy improves neuron survival

May 15, 2025
Quantum simulation of chemical dynamics achieved for first time

Quantum simulation of chemical dynamics achieved for first time

May 15, 2025
The mysterious chemical world inside nanopores.

The Mysterious Chemical World Inside Nanopores

May 13, 2025
Stability solution brings unique form of carbon closer to practical application.

Stability solution brings unique form of carbon closer to practical application

May 10, 2025
It’s Hard to Get Meds to the Lungs: Breathable Algae Offers a New Path.

It’s Hard to Get Meds to the Lungs: Breathable Algae Offers a New Path

May 7, 2025
New Bayesian Method Enables Rapid Detection of Quantum Dot Charge States

New Bayesian Method Enables Rapid Detection of Quantum Dot Charge States

May 2, 2025
  • About
  • Advertise
  • Privacy Policy
  • Terms & Conditions
  • Contact
Sunday, June 1, 2025
  • Login
  • Register
Nanodigest
  • Home
  • Categories
    • Biological Science & Technology
    • Chemical Science & Technology
    • Material Science & Technology
    • Physical Science & Technology
    • Innovations & Education
  • NanoDigestExclusive
    AI and X-ray Vision to Gain Insight into Battery Electrolyte.

    AI and X-ray Vision to Gain Insight into Battery Electrolyte

    Emergence Quantum: a commercial quantum research 'special ops' team

    Emergence Quantum: a commercial quantum research ‘special ops’ team

    Couple satisfaction linked to fewer cognitive issues with chemo

    Ultrasound and Cilia to Clean Implanted Stents and Catheters

    Ultrasound and Cilia to Clean Implanted Stents and Catheters

    Celebrating Science

    Nobel prize for a New Way in Cancer Treatment

    Nobel prize for New Way in Cancer Treatment

    Simple to use device. Nano Digest.

    Simple to Use Device

    Nanofoam: Breakthrough in Material Design. Nano Digest.

    Nanofoam: Breakthrough in Material Design

    The Future of Solar Energy. Nano Digest.

    The Future of Solar Energy

    Trending Tags

    • 2D nanospace
    • 3D nano structures
    • Bacterial magnetic nanoparticle
    • Creation of nano technology
    • nano particles
    • Nano Technology
    • Nano Tv
    • nanomaterials
    • nanoparticles
    • Nanosciences
    • nanotubes
    • Nanowire
  • Nano TvYouTube
    Nanotechnology in Engineering – NANOENGINEERING | Nano Tv

    Nanotechnology in Engineering – NANOENGINEERING | Nano Tv

    nanotechnology, materials, graphene, nano digest, NanoTV

    Nanotechnology in Materials – GRAPHENE | Nano Tv

    Nanotechnology in Electronics - NANOELECTRONICS | Nano Tv, Nano Digest

    Nanotechnology in Electronics-NANOELECTRONICS | Nano Tv

    Nanotechnology in Medicine - NANOMEDICINE, Nano Tv, nano digest

    Nanotechnology in Medicine-NANOMEDICINE | Nano Tv

    Molecular Nanotechnology-NANOTECHNOLOGY & IMPLEMENTATIONS | Nano Tv, It deals with engineering nanoscale machines that operate on the molecular scale distinct from other areas of nanotechnology, such as nanoscale materials, nano digest

    Molecular Nanotechnology-NANOTECHNOLOGY & IMPLEMENTATIONS | Nano Tv

    What are Nanoparticles?, nano digest

    What are NANOPARTICLES?: Nano Tv

    THE ORIGIN & CHALLENGE by Richard Feynman | Nano Tv

    THE ORIGIN & CHALLENGE by Richard Feynman: Nano Tv

    Introduction, NANOTECHNOLOGY, nano digest, Nano Tv

    Introduction to NANOTECHNOLOGY | Nano Tv

  • ShopSale
No Result
View All Result
Nanodigest
No Result
View All Result
Home Physical Science & Technology

Reduce errors across Quantum Computers

by Nano Digest
September 26, 2022
in Physical Science & Technology
0
Reduce errors, Quantum Computers, nano digest, Dr Grimsmo

Dr Grimsmo

492
SHARES
1.4k
VIEWS
Share on FacebookShare on TwitterShare on Whatsapp

Scientists in Australia have developed a new approach (Reduce errors across Quantum Computers) to reducing the errors that plague experimental quantum computers; a step that could remove a critical roadblock preventing them scaling up to full working machines.

By taking advantage of the infinite geometric space of a particular quantum system made up of bosons, the researchers, led by Dr Arne Grimsmo from the University of Sydney, have developed quantum error (Reduce errors across Quantum Computers) correction codes that should reduce the number of physical quantum switches, or qubits, required to scale up these machines to a useful size.

“The beauty of these codes is they are ‘platform agnostic’ and can be developed to work with a wide range of quantum hardware systems,” Dr Grimsmo said.

“Many different types of bosonic error correction codes have been demonstrated experimentally, such as ‘cat codes’ and ‘binomial codes’,” he said. “What we have done in our paper is unify these
and other codes into a common framework.”

The research, published this week in Physical Review X, was jointly written with Dr Joshua Combes from the University of Queensland and Dr Ben Baragiola from RMIT University. The collaboration is across two leading quantum research centres in Australia, the ARC Centre of Excellence for Engineered Quantum Machines and the ARC Centre of Excellence for Quantum Computation and Communication Technology.

Robust qubits

“Our hope is that the robustness offered by ‘spacing things out’ in an infinite Hilbert space gives you a qubit that is very robust, because it can tolerate common errors like photon loss,” said Dr Grimsmo from the University of Sydney Nano Institute and School of Physics.

Scientists in universities and at tech companies across the planet are working towards building a universal, fault-tolerant quantum computer. The great promise of these devices is that they could be used to solve problems beyond the reach of classical supercomputers in fields as varied as materials science, drug discovery and security and cryptography.

With Google last year declaring it has a machine that has achieved ‘quantum supremacy’ – performing an arguably useless task but beyond the scope of a classical computer – interest in the field of quantum computing and engineering continues to rise.

But to build a quantum machine that can do anything useful will require thousands, if not millions of quantum bits operating without being overwhelmed with errors.

And qubits are, by their very nature, error prone. The ‘quantumness’ that allows them to perform a completely different type of computing operation means they are highly fragile and susceptible to electromagnetic and other interference.

Identifying, removing and reducing errors in quantum computation is one of the central tasks facing physicists working in this field.

Fragile superpositions

Quantum computers perform their tasks by encoding information utilising quantum superposition – a fundamental facet of nature where a final outcome of a physical system is unresolved until it is measured. Until that point, the information exists in a state of multiple possible outcomes.

Dr Grimsmo said: “One of the most fundamental challenges for realising quantum computers is the fragile nature of quantum superpositions. Fortunately, it is possible to overcome this issue using quantum error correction.”

This is done by encoding information redundantly, allowing the correction of errors as they happen during a quantum computation. The standard approach to achieve this is to use a large number of
distinguishable particles as information carriers. Common examples are arrays of electrons, trapped ions or quantum electrical circuits.

However, this creates a large network of ‘physical qubits’ in order to operate a single, logical qubit that does the processing work you require.

This need to create a large network of physical qubits to support the work of a single operating qubit is a non-trivial barrier towards constructing large-scale quantum machines. Indistinguishable bosons

Dr Grimsmo said: “In this work, we consider an alternative approach based on encoding quantum information in collections of bosons.” The most common type of boson is the photon, a packet of electromagnetic energy and massless ‘light particle’.

By trapping bosons in a particular microwave or optical cavity, they become indistinguishable from one another, unlike, say, an array of trapped ions, which are identifiable by their location.

“The advantage of this approach is that large numbers of bosons can be trapped in a single quantum system such as photons trapped in a high-quality optical or microwave cavity,” Dr Grimsmo said. “This could drastically reduce the number of physical systems required to build a quantum computer.”

The researchers hope their foundational work will help build a roadmap towards fault tolerance in quantum computing.

Tags: computerquantum computersquantum systemRobust qubits
Share197Tweet123Send
Nano Digest

Nano Digest

  • Trending
  • Comments
  • Latest

Nanotechnology in Cancer

September 10, 2020
Emergence of 2.5D Materials for Futuristic Applications

Emergence of 2.5D Materials for Futuristic Applications

June 29, 2022
New research methods developed for nano and quantum materials. Nano Digest.

New research methods developed for nano and quantum materials

February 24, 2023
Designing Gas detecting devices using nanomaterials. Nano Digest.

Designing Gas detecting devices using nanomaterials

2
3D Printing Allows Precise Light Control for Color Composition. nano Digest.

3D Printing Allows Precise Light Control for Color Composition

2

Wearable sensor monitors health, administers drugs using saliva and tears

1
New Printable, Injectable Materials for Advanced Medical Applications

New Printable, Injectable Materials for Advanced Medical Applications

May 29, 2025
Metal fleece: material for the batteries of the future

Metal fleece: material for the batteries of the future

May 24, 2025
AI and X-ray Vision to Gain Insight into Battery Electrolyte.

AI and X-ray Vision to Gain Insight into Battery Electrolyte

May 23, 2025
Nanodigest

Copyright © 2009-2022 NanoDigest.in

Navigate Site

  • About
  • Advertise
  • Privacy Policy
  • Terms & Conditions
  • Contact

Follow Us

No Result
View All Result
  • Home
  • Biological Science & Technology
  • Chemical Science & Technology
  • Material Science & Technology
  • Physical Science & Technology
  • Innovations & Education
  • NanoDigest Exclusive
  • Nano Tv
  • —————————–
  • About
  • Advertise
  • Contact
  • Privacy Policy
  • Terms & Conditions

Copyright © 2009-2022 NanoDigest.in

Welcome Back!

Sign In with Google
OR

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Sign Up with Google
OR

Fill the forms below to register

*By registering into our website, you agree to the Terms & Conditions and Privacy Policy.
All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Cookie SettingsAccept All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.