• Latest
  • Trending
  • All
Shunt excess electricity in no time record-breaking gallium nitride diodes nano digest

Shunt excess electricity within no time

March 17, 2022
Using lightning to make ammonia out of thin air

Using lightning to make ammonia out of thin air

July 6, 2025
Sydney scholar Richard Payne honoured.

Sydney scholar Richard Payne honoured

June 30, 2025
Physicists confirm elusive quantum spin liquid in new study

Physicists confirm elusive quantum spin liquid in new study

June 24, 2025
A building material that lives and stores carbon

A building material that lives and stores carbon

June 20, 2025
Researchers crack the code of body’s ancient immune defense.

Researchers crack the code of body’s ancient immune defense

June 19, 2025
Nanofibers yield stronger, tougher carbon fiber composites

Nanofibers yield stronger, tougher carbon fiber composites

June 18, 2025
The New Method for Formation of Chemical Bonds

The New Method for Formation of Chemical Bonds

June 18, 2025
Nanoneedles patch for painless Cancer Biopsies

Nanoneedles patch for painless Cancer Biopsies

June 17, 2025
Practising medicine on a lifelike silicone model

Practising medicine on a lifelike silicone model

June 16, 2025
Stabilising fleeting quantum states with light

Stabilising fleeting quantum states with light

June 9, 2025
New Printable, Injectable Materials for Advanced Medical Applications

New Printable, Injectable Materials for Advanced Medical Applications

May 29, 2025
Metal fleece: material for the batteries of the future

Metal fleece: material for the batteries of the future

May 24, 2025
  • About
  • Advertise
  • Privacy Policy
  • Terms & Conditions
  • Contact
Monday, July 7, 2025
  • Login
  • Register
Nanodigest
  • Home
  • Categories
    • Biological Science & Technology
    • Chemical Science & Technology
    • Material Science & Technology
    • Physical Science & Technology
    • Innovations & Education
  • NanoDigestExclusive
    Sydney scholar Richard Payne honoured.

    Sydney scholar Richard Payne honoured

    AI and X-ray Vision to Gain Insight into Battery Electrolyte.

    AI and X-ray Vision to Gain Insight into Battery Electrolyte

    Emergence Quantum: a commercial quantum research 'special ops' team

    Emergence Quantum: a commercial quantum research ‘special ops’ team

    Couple satisfaction linked to fewer cognitive issues with chemo

    Ultrasound and Cilia to Clean Implanted Stents and Catheters

    Ultrasound and Cilia to Clean Implanted Stents and Catheters

    Celebrating Science

    Nobel prize for a New Way in Cancer Treatment

    Nobel prize for New Way in Cancer Treatment

    Simple to use device. Nano Digest.

    Simple to Use Device

    Nanofoam: Breakthrough in Material Design. Nano Digest.

    Nanofoam: Breakthrough in Material Design

    Trending Tags

    • 2D nanospace
    • 3D nano structures
    • Bacterial magnetic nanoparticle
    • Creation of nano technology
    • nano particles
    • Nano Technology
    • Nano Tv
    • nanomaterials
    • nanoparticles
    • Nanosciences
    • nanotubes
    • Nanowire
  • Nano TvYouTube
    Nanotechnology in Engineering – NANOENGINEERING | Nano Tv

    Nanotechnology in Engineering – NANOENGINEERING | Nano Tv

    nanotechnology, materials, graphene, nano digest, NanoTV

    Nanotechnology in Materials – GRAPHENE | Nano Tv

    Nanotechnology in Electronics - NANOELECTRONICS | Nano Tv, Nano Digest

    Nanotechnology in Electronics-NANOELECTRONICS | Nano Tv

    Nanotechnology in Medicine - NANOMEDICINE, Nano Tv, nano digest

    Nanotechnology in Medicine-NANOMEDICINE | Nano Tv

    Molecular Nanotechnology-NANOTECHNOLOGY & IMPLEMENTATIONS | Nano Tv, It deals with engineering nanoscale machines that operate on the molecular scale distinct from other areas of nanotechnology, such as nanoscale materials, nano digest

    Molecular Nanotechnology-NANOTECHNOLOGY & IMPLEMENTATIONS | Nano Tv

    What are Nanoparticles?, nano digest

    What are NANOPARTICLES?: Nano Tv

    THE ORIGIN & CHALLENGE by Richard Feynman | Nano Tv

    THE ORIGIN & CHALLENGE by Richard Feynman: Nano Tv

    Introduction, NANOTECHNOLOGY, nano digest, Nano Tv

    Introduction to NANOTECHNOLOGY | Nano Tv

  • ShopSale
No Result
View All Result
Nanodigest
No Result
View All Result
Home Material Science & Technology

Shunt excess electricity within no time

a significant step towards protecting the nation’s electric grid from an electromagnetic pulse.

by Nano Digest
March 17, 2022
in Material Science & Technology
0
Shunt excess electricity in no time record-breaking gallium nitride diodes nano digest

A close-up of the array of record-breaking gallium nitride diodes created by a team of Sandia National Laboratories scientists. These diodes are a step on the path to protecting the electrical grid from EMPs. (Photo by Rebecca Gustaf) 

491
SHARES
1.4k
VIEWS
Share on FacebookShare on TwitterShare on Whatsapp

Scientists from Sandia National Laboratories have announced a tiny, electronic device that can shunt excess electricity within a few billionths of a second while operating at a record-breaking 6,400 volts — a significant step towards protecting the nation’s electric grid from an electromagnetic pulse.

The team published the fabrication and testing results of their device on March 10 in the scientific journal IEEE Transactions on Electron Devices. The team’s ultimate goal is to provide protection from voltage surges, which could lead to months-long power interruptions, with a device that operates at up to 20,000 volts. For comparison, a household electric dryer uses 240 volts of electricity shunt excess electricity.

An electromagnetic pulse, or EMP, can be caused by natural phenomena, such as solar flares, or human activity, such as a nuclear detonation in the atmosphere. An EMP causes huge voltages in a few billionths of a second, potentially affecting and damaging electronic devices over large swaths of the country.

EMPs are unlikely, said Bob Kaplar, manager of a semiconductor device research group at Sandia, but if one were to occur and damage the huge transformers that form the backbone of our electric grid, it could take months to replace them and re-establish power to the affected portion of the nation.

“The reason why these devices are relevant to protecting the grid from an EMP is not just that they can get to high voltage — other devices can get to high voltage — but that they can respond in a couple billionths of a second,” Kaplar said. “While the device is protecting the grid from an EMP, it’s at a very high voltage and thousands of amps are going through it, which is a huge amount of power. A material can only handle so much power for a certain amount of time, but we think the material in our diode has some advantages over other materials.” if shunt excess electricity.

A regulator valve for the grid to shunt

The new Sandia device is a diode that can shunt a record-breaking 6,400 volts of electricity within a few billionths of a second — a significant advancement toward being able to protect the nation’s electric grid from an EMP. The team, including Sandia electrical engineer Luke Yates, the first author on the paper, is working towards fabricating a diode able to operate at around 20,000 volts, since most grid distribution electronics operate at around 13,000 volts.

Diodes are electronic components found in nearly every electronic device and serve as one-way regulator valves, said Mary Crawford a Sandia Senior Scientist leading diode design and fabrication for the project. Diodes allow electricity to flow in one direction through the device, but not the other. They can be used to convert AC power into DC power, and in this project, divert damaging high voltage away from sensitive grid transformers.

Kaplar agreed that the diode operates somewhat like a regulator valve in plumbing. He said, “In a regulator valve, even if you open that valve all the way, you can’t flow an infinite amount of water through the valve. Similarly, there’s a limit to how much current you can flow through our diode. If the valve on the pipe is closed, if the pressure reaches a certain point, it’ll burst. Analogously, the diode cannot block an infinite voltage. However, our EMP device uses the point at which the diode can no longer block the high voltage, holds the voltage to that ‘pressure,’ shunting the excess current through itself, to the ground and away from the grid equipment in a controlled, non-destructive fashion.”

The voltage surges caused by EMPs are a hundred times faster than those caused by lightning, so experts don’t know if the devices designed to protect the grid against lightning strikes would be effective against an EMP, said Jack Flicker, a Sandia electric grid resiliency expert on the team.

“The electric grid has a number of different protections,” Flicker added. “They range in timeframe from very fast to very slow, and they’re overlaid on the electric grid to ensure that an event cannot cause a catastrophic outage of the electric grid. The fastest protection that we typically have on the grid reacts against pulses at one millionth of a second, to protect against lightning. For EMPs, we’re talking ten billionths of a second, a hundred times faster.”

The new Sandia device can react that quickly.

Growing perfect layers

Part of what makes the diode special is that it is made from gallium nitride, the same basic material used in LEDs, Kaplar said. Gallium nitride is a semiconductor, like silicon. But because of its chemical properties, it can hold off much higher voltage before it breaks down than silicon, Crawford said. The material itself also responds very quickly and therefore is a good candidate to achieve the fast response needed to protect the grid from an EMP.

Crawford and materials scientists Brendan Gunning and Andrew Allerman made the devices by “growing” gallium nitride semiconductor layers using a process called chemical vapor deposition, she said. First, they heat a commercially available gallium nitride wafer to around 1,800 degrees Fahrenheit and then add vapors that include gallium and nitrogen atoms. These chemicals form layers of crystalline gallium nitride on the surface of the wafer.

 

By tweaking the ingredients and the “baking” process, the team could produce layers with different electrical properties. By building up these layers in a specific order, combined with processing steps, such as etching and adding electrical contacts, the team produced devices with the needed behavior.

“A major challenge of achieving these very high voltage diodes is the need to have very thick gallium nitride layers,” Crawford said. “The drift regions of these devices have thicknesses of about 50 microns, or 1/6th of a sheet of notebook paper. This may not sound like a lot, but the growth process we use can have growth rates of only one or two microns per hour. A second major challenge is maintaining very low densities of crystalline defects, specifically impurities or missing atoms in the semiconductor material, throughout the growth time in order to generate devices that work at these very high voltages.”

For the team to reach their ultimate goal of a device that operates at 20,000 volts, they will need to grow the thick layer even thicker with even fewer defects, Crawford said. There are several other technical challenges to constructing a device that can operate at such high voltages and currents, she added, including designs to manage the very high internal electric fields within the devices.

Testing ultrafast diodes

Once Crawford’s team fabricated the devices, Flicker and his team tested how the devices responded to fast voltage spikes, similar to what would occur during an EMP. His challenge has been modifying a tool to measure the very fast response time of the devices to shunt excess electricity.

“Developing the tools that can accurately measure the very fast responses is very difficult,” Flicker said. “If we’re talking one or two billionths of a second, they need to be able to measure even faster than that, which is a challenge.”

Flicker and his team used very specialized equipment to apply a high voltage pulse, and measure the electric pulse that is reflected back from the diode to tell when the device turns on, (when shunt excess electricity) very accurately and in less than a billionth of a second.

Useful for smart transformers, solar panel converters and more

Diode devices like the Sandia gallium nitride diode can be used for other purposes, beyond protecting the grid from EMPs, Kaplar said. These include smart transformers for the grid, electronic devices to convert electricity from roof-top solar panels into power that can be used by household appliances, and even electric car charging infrastructure.

Commonly, solar panel converters and electric car charging infrastructure can handle 1,200 or 1,700 volts, he added. But operating at higher voltage allows for higher efficiencies and lower electricity losses. Another portion of the project is to develop diodes for these types of devices that operate at high, but not record-breaking voltage but are easier to manufacture, Kaplar said. The Naval Research Laboratory is leading this part of the project.

Some smart transformers and electronic devices can now operate at up to 3,300 volts, Flicker said, but efficiencies would be even greater if they could operate at 10,000 or 15,000 volts with one semiconductor device.

“We have this primary goal of protection of the electrical grid, but these devices have other uses beyond that,” Flicker said. “It’s interesting to have our application area, but know that these devices can be used in power electronics, power converters, everything that’s at very high voltages.”

Share196Tweet123Send
Nano Digest

Nano Digest

  • Trending
  • Comments
  • Latest

Nanotechnology in Cancer

September 10, 2020
Emergence of 2.5D Materials for Futuristic Applications

Emergence of 2.5D Materials for Futuristic Applications

June 29, 2022
New research methods developed for nano and quantum materials. Nano Digest.

New research methods developed for nano and quantum materials

February 24, 2023
Designing Gas detecting devices using nanomaterials. Nano Digest.

Designing Gas detecting devices using nanomaterials

2
3D Printing Allows Precise Light Control for Color Composition. nano Digest.

3D Printing Allows Precise Light Control for Color Composition

2

Wearable sensor monitors health, administers drugs using saliva and tears

1
Using lightning to make ammonia out of thin air

Using lightning to make ammonia out of thin air

July 6, 2025
Sydney scholar Richard Payne honoured.

Sydney scholar Richard Payne honoured

June 30, 2025
Physicists confirm elusive quantum spin liquid in new study

Physicists confirm elusive quantum spin liquid in new study

June 24, 2025
Nanodigest

Copyright © 2009-2022 NanoDigest.in

Navigate Site

  • About
  • Advertise
  • Privacy Policy
  • Terms & Conditions
  • Contact

Follow Us

No Result
View All Result
  • Home
  • Biological Science & Technology
  • Chemical Science & Technology
  • Material Science & Technology
  • Physical Science & Technology
  • Innovations & Education
  • NanoDigest Exclusive
  • Nano Tv
  • —————————–
  • About
  • Advertise
  • Contact
  • Privacy Policy
  • Terms & Conditions

Copyright © 2009-2022 NanoDigest.in

Welcome Back!

Sign In with Google
OR

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Sign Up with Google
OR

Fill the forms below to register

*By registering into our website, you agree to the Terms & Conditions and Privacy Policy.
All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Cookie SettingsAccept All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.