• Latest
  • Trending
  • All

“structural color” works differently

August 7, 2021
Sugar-coated nanotherapy dramatically improves neuron survival in Alzheimer’s model.

Sugar-coated nanotherapy improves neuron survival

May 15, 2025
Quantum simulation of chemical dynamics achieved for first time

Quantum simulation of chemical dynamics achieved for first time

May 15, 2025
The mysterious chemical world inside nanopores.

The Mysterious Chemical World Inside Nanopores

May 13, 2025
Stability solution brings unique form of carbon closer to practical application.

Stability solution brings unique form of carbon closer to practical application

May 10, 2025
It’s Hard to Get Meds to the Lungs: Breathable Algae Offers a New Path.

It’s Hard to Get Meds to the Lungs: Breathable Algae Offers a New Path

May 7, 2025
New Bayesian Method Enables Rapid Detection of Quantum Dot Charge States

New Bayesian Method Enables Rapid Detection of Quantum Dot Charge States

May 2, 2025
Unique molecule may lead to smaller, more efficient computers

Unique molecule may lead to smaller, more efficient computers

May 2, 2025
Depositing dots on corrugated chips improves photodetector capabilities.

Depositing dots on corrugated chips improves photodetector capabilities

May 2, 2025

Explaining the link between ‘good’ gut bacteria and rheumatoid arthritis

May 2, 2025
The way for scalable organic solar cells with enhanced thickness tolerance.

The way for scalable organic solar cells with enhanced thickness tolerance

May 1, 2025
Researchers advance toward a fault-tolerant quantum computer.

Researchers advance toward a fault-tolerant quantum computer

April 30, 2025

Couple satisfaction linked to fewer cognitive issues with chemo

April 30, 2025
  • About
  • Advertise
  • Privacy Policy
  • Terms & Conditions
  • Contact
Sunday, May 18, 2025
  • Login
  • Register
Nanodigest
  • Home
  • Categories
    • Biological Science & Technology
    • Chemical Science & Technology
    • Material Science & Technology
    • Physical Science & Technology
    • Innovations & Education
  • NanoDigestExclusive

    Couple satisfaction linked to fewer cognitive issues with chemo

    Ultrasound and Cilia to Clean Implanted Stents and Catheters

    Ultrasound and Cilia to Clean Implanted Stents and Catheters

    Celebrating Science

    Nobel prize for a New Way in Cancer Treatment

    Nobel prize for New Way in Cancer Treatment

    Simple to use device. Nano Digest.

    Simple to Use Device

    Nanofoam: Breakthrough in Material Design. Nano Digest.

    Nanofoam: Breakthrough in Material Design

    The Future of Solar Energy. Nano Digest.

    The Future of Solar Energy

    Transfer data and multiple lights at the same time. Nano Digest.

    Transfer data and multiple lights at the same time

    Creator of Lithium Ion Batteries, John Goodenough dies at 100

    Trending Tags

    • 2D nanospace
    • 3D nano structures
    • Bacterial magnetic nanoparticle
    • Creation of nano technology
    • nano particles
    • Nano Technology
    • Nano Tv
    • nanomaterials
    • nanoparticles
    • Nanosciences
    • nanotubes
    • Nanowire
  • Nano TvYouTube
    Nanotechnology in Engineering – NANOENGINEERING | Nano Tv

    Nanotechnology in Engineering – NANOENGINEERING | Nano Tv

    nanotechnology, materials, graphene, nano digest, NanoTV

    Nanotechnology in Materials – GRAPHENE | Nano Tv

    Nanotechnology in Electronics - NANOELECTRONICS | Nano Tv, Nano Digest

    Nanotechnology in Electronics-NANOELECTRONICS | Nano Tv

    Nanotechnology in Medicine - NANOMEDICINE, Nano Tv, nano digest

    Nanotechnology in Medicine-NANOMEDICINE | Nano Tv

    Molecular Nanotechnology-NANOTECHNOLOGY & IMPLEMENTATIONS | Nano Tv, It deals with engineering nanoscale machines that operate on the molecular scale distinct from other areas of nanotechnology, such as nanoscale materials, nano digest

    Molecular Nanotechnology-NANOTECHNOLOGY & IMPLEMENTATIONS | Nano Tv

    What are Nanoparticles?, nano digest

    What are NANOPARTICLES?: Nano Tv

    THE ORIGIN & CHALLENGE by Richard Feynman | Nano Tv

    THE ORIGIN & CHALLENGE by Richard Feynman: Nano Tv

    Introduction, NANOTECHNOLOGY, nano digest, Nano Tv

    Introduction to NANOTECHNOLOGY | Nano Tv

  • ShopSale
No Result
View All Result
Nanodigest
No Result
View All Result
Home Physical Science & Technology

“structural color” works differently

by Nano Digest
August 7, 2021
in Physical Science & Technology
0
491
SHARES
1.4k
VIEWS
Share on FacebookShare on TwitterShare on Whatsapp
The researchers experimented with nanoscale strips of a two-dimensional semiconductor, tungsten disulfide, arranged on a gold backing. Credit: University of Pennsylvania

Most of the time, a material’s color stems from its chemical properties. Different atoms and molecules absorb different wavelengths of light; the remaining wavelengths are the “intrinsic colors” that we perceive when they are reflected back to our eyes.

So-called “structural color” works differently; it’s a property of physics, not chemistry. Microscopic patterns on some surfaces reflect light in such a way that different wavelengths collide and interfere with one another. For example, a peacock’s feathers are made of transparent protein fibers that have no intrinsic color themselves, yet we see shifting, iridescent blue, green and purple hues because of the nanoscale structures on their surfaces.

As we become more adept at manipulating structure at the smallest scales, however, these two types of color can combine in even more surprising ways. Penn Engineers have now developed a system of nanoscale semiconductor strips that uses structural color interactions to eliminate the strips’ intrinsic color entirely.

Though the strips should absorb orange light and thus appear a shade of blue, they appear to have no color at all.

Fine-tuning such a system has implications for holographic displays and optical sensors. It could also pave the way for new types of microlasers and detectors, fundamental elements of long-sought-after photonic computers.

The study was led by Deep Jariwala, assistant professor in the Department of Electrical and Systems Engineering, along with lab members Huiqin Zhang, a graduate student, and Bhaskar Abhiraman, an undergraduate.

It was published in Nature Communications.

The researcher’s experimental system consists of nanoscale strips of a two-dimensional semiconductor, tungsten disulfide, arranged on a gold backing. These strips, only a few dozen atoms thick, are spaced out at sub-optical wavelength sizes, allowing them to give off the type of structural color seen in butterfly wings and peacock feathers.

“We played with the dimensions of this system, took a lot of experimental measurements, and ran a lot of simulations. Then we noticed something weird,” Abhiraman says. “If the dimensions of these strips were just right, the absorption of orange light, which should be intrinsic to the material, disappeared! In other words, the coating that comprised of these stripes is insensitive to incoming light and only shows the properties of the underlying substrate.”

“Other nanophotonics researchers have previously shown before that structural color and these intrinsic absorptions can interact; this is called ‘strong coupling.’ However, no one has seen this kind of disappearance before, especially in a material that is otherwise supposed to absorb nearly 100 percent of the light,” Jariwala says. “In the example of bird feathers or butterfly wings, it’s the biological material’s nanoscale structures which gives them iridescent colors, since those materials don’t have much intrinsic color on their own. But if a material does have a strong intrinsic color, we show that one can do the opposite and make it disappear with appropriate nanostructuring. In some ways, it is cloaking the material’s intrinsic color from its response to light.”

Investigating this phenomenon involves understanding how intrinsic color works on a subatomic level. An atom’s electrons are arranged in different concentric levels, depending on how many electrons that element has. Depending on the available spaces in those arrangements, an electron can jump to a higher level when it absorbs the energy from a certain wavelength of light. The wavelengths that are capable of exciting electrons in this way determine which are absorbed and which are reflected, and thus a material’s intrinsic color.

Nanophotonics researchers like Jariwala, Zhang and Abhiraman study even more complicated interactions between electrons and their neighbors. When atoms are arranged in repeating crystalline patterns, such as those found in the two-dimensional strips of tungsten disulfide, their electron layers overlap into contiguous bands. These bands are what allow conductive materials to pass charges from electron to electron. Semiconductors, like tungsten disulfide, are ubiquitous in electronics because the interplay between their electron bands give rise to useful phenomena that can be manipulated with external forces.

In this case, the interaction of light and electrical charge within the semiconductor strips produced the unprecedented “cloaking” effect.

“When the electron is excited by orange wavelengths, it creates a vacancy known as a hole, leaving the crystal with a tightly bound pair of opposite charges called an exciton,” Jariwala says. “Because light is a form of electromagnetic radiation, its electromagnetic field can interact with this charge excitation and in special circumstances cancel it out, so that an observer would see the orange of the gold substrate instead of the blue of the strips on top of it.”

In their paper, Jariwala and his colleagues showed that the structural color effects and the intrinsic exciton absorption interaction can be modeled with the exact same mathematics as coupled oscillators: masses bouncing on springs.

“We applied this model and discovered that under certain conditions, this disappearance effect can be reproduced,” Zhang says. “It’s beautiful that a trick from classical mechanics can explain the way our structure interacts with light.”

This type of structural color, or the lack of it, can be used to make nanometer thickness coatings that are engineered to be insensitive to incoming light, meaning the coating appears to be the same color as material underneath it. Different spatial arrangements of those nanoscale features could produce the opposite effect, allowing for brilliant holograms and displays. Traditionally, manipulating such features has been difficult, as the required materials were much thicker and harder to fabricate.

“Since this structural color that we observe is also very sensitive to its surrounding environment,” Abhiraman says, “one can imagine make cheap and sensitive colorimetric sensors for chemicals or biological molecules if paired with the right chemical bait.”

“Another area of potential application is integrated spectrometers and photodetectors on a chip,” he says. “Even here, traditional semiconductor materials such as silicon have been hard to use since their optical properties are not conducive for strong-absorption. By virtue of the 2-D materials’ quantum confined nature, they absorb or interact with light very strongly, and their sheet-like structure makes it easy to place or deposit or coat them on arbitrary surfaces.”

The researchers think that the most powerful application of their system might be in photonic computers, where photons replace electrons as the medium for digital information, massively improving their speed.

“Hybridization of light and matter has long been used in optical communication switches and has been envisioned as the operating principle for the ultra-low threshold power lasers necessary for photonic computing,” Jariwala says. “However, it has been difficult to get such devices to work at room temperatures in a reliable and desired manner. Our work shows a new path towards making and integrating such lasers on arbitrary substrates, especially if we can find and replace our current 2-D semiconductors with ones that like to emit a lot of light.”

Tags: Nano Technology
Share196Tweet123Send
Nano Digest

Nano Digest

  • Trending
  • Comments
  • Latest

Nanotechnology in Cancer

September 10, 2020
Emergence of 2.5D Materials for Futuristic Applications

Emergence of 2.5D Materials for Futuristic Applications

June 29, 2022
New research methods developed for nano and quantum materials. Nano Digest.

New research methods developed for nano and quantum materials

February 24, 2023
Designing Gas detecting devices using nanomaterials. Nano Digest.

Designing Gas detecting devices using nanomaterials

2
3D Printing Allows Precise Light Control for Color Composition. nano Digest.

3D Printing Allows Precise Light Control for Color Composition

2

Wearable sensor monitors health, administers drugs using saliva and tears

1
Sugar-coated nanotherapy dramatically improves neuron survival in Alzheimer’s model.

Sugar-coated nanotherapy improves neuron survival

May 15, 2025
Quantum simulation of chemical dynamics achieved for first time

Quantum simulation of chemical dynamics achieved for first time

May 15, 2025
The mysterious chemical world inside nanopores.

The Mysterious Chemical World Inside Nanopores

May 13, 2025
Nanodigest

Copyright © 2009-2022 NanoDigest.in

Navigate Site

  • About
  • Advertise
  • Privacy Policy
  • Terms & Conditions
  • Contact

Follow Us

No Result
View All Result
  • Home
  • Biological Science & Technology
  • Chemical Science & Technology
  • Material Science & Technology
  • Physical Science & Technology
  • Innovations & Education
  • NanoDigest Exclusive
  • Nano Tv
  • —————————–
  • About
  • Advertise
  • Contact
  • Privacy Policy
  • Terms & Conditions

Copyright © 2009-2022 NanoDigest.in

Welcome Back!

Sign In with Google
OR

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Sign Up with Google
OR

Fill the forms below to register

*By registering into our website, you agree to the Terms & Conditions and Privacy Policy.
All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Cookie SettingsAccept All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.