• Latest
  • Trending
  • All
Wrinkles in atomically thin materials unlock ultra efficient electronics

Wrinkles in Atomically Thin Materials Unlock Ultra efficient Electronics

August 26, 2025
Students develop novel multi-metal 3D printing process.

Students develop novel multi-metal 3D printing process

September 4, 2025
Geometry revealed at the heart of quantum matter 

Geometry revealed at the heart of quantum matter

September 2, 2025
Researchers track the motion of a single electron during a chemical reaction

Researchers track the motion of a single electron during a chemical reaction

August 21, 2025

New method produces ultra-thin membranes

August 20, 2025
BREATHE NEW LIFE INTO UNUSED VACCINES

BREATHE NEW LIFE INTO UNUSED VACCINES

August 13, 2025
Illuminate previously unseen properties of materials

Illuminate previously unseen properties of materials

August 13, 2025
AI helps chemists develop tougher plastics.

AI helps chemists develop tougher plastics

August 9, 2025
Molecules in the Spotlight

Molecules in the Spotlight

August 8, 2025
Ultra-fast, in-line atomic force microscope (AFM),

New Ultra-fast, in-line Atomic Force Microscope (AFM)

August 8, 2025
Friction which cools

Friction which cools

August 7, 2025
Left-handed or right-handed? Nanostructures identified by light.

Left-handed or right-handed? Nanostructures identified by light

August 5, 2025
New possibilities for scanning tunnelling microscopy

New Possibilities for Scanning Tunnelling Microscopy

July 21, 2025
  • About
  • Advertise
  • Privacy Policy
  • Terms & Conditions
  • Contact
Saturday, October 4, 2025
  • Login
  • Register
Nanodigest
  • Home
  • Categories
    • Biological Science & Technology
    • Chemical Science & Technology
    • Material Science & Technology
    • Physical Science & Technology
    • Innovations & Education
  • NanoDigestExclusive
    Students develop novel multi-metal 3D printing process.

    Students develop novel multi-metal 3D printing process

    Ultra-fast, in-line atomic force microscope (AFM),

    New Ultra-fast, in-line Atomic Force Microscope (AFM)

    Sydney scholar Richard Payne honoured.

    Sydney scholar Richard Payne honoured

    AI and X-ray Vision to Gain Insight into Battery Electrolyte.

    AI and X-ray Vision to Gain Insight into Battery Electrolyte

    Emergence Quantum: a commercial quantum research 'special ops' team

    Emergence Quantum: a commercial quantum research ‘special ops’ team

    Couple satisfaction linked to fewer cognitive issues with chemo

    Ultrasound and Cilia to Clean Implanted Stents and Catheters

    Ultrasound and Cilia to Clean Implanted Stents and Catheters

    Celebrating Science

    Nobel prize for a New Way in Cancer Treatment

    Nobel prize for New Way in Cancer Treatment

    Trending Tags

    • 2D nanospace
    • 3D nano structures
    • Bacterial magnetic nanoparticle
    • Creation of nano technology
    • nano particles
    • Nano Technology
    • Nano Tv
    • nanomaterials
    • nanoparticles
    • Nanosciences
    • nanotubes
    • Nanowire
  • Nano TvYouTube
    Nanotechnology in Engineering – NANOENGINEERING | Nano Tv

    Nanotechnology in Engineering – NANOENGINEERING | Nano Tv

    nanotechnology, materials, graphene, nano digest, NanoTV

    Nanotechnology in Materials – GRAPHENE | Nano Tv

    Nanotechnology in Electronics - NANOELECTRONICS | Nano Tv, Nano Digest

    Nanotechnology in Electronics-NANOELECTRONICS | Nano Tv

    Nanotechnology in Medicine - NANOMEDICINE, Nano Tv, nano digest

    Nanotechnology in Medicine-NANOMEDICINE | Nano Tv

    Molecular Nanotechnology-NANOTECHNOLOGY & IMPLEMENTATIONS | Nano Tv, It deals with engineering nanoscale machines that operate on the molecular scale distinct from other areas of nanotechnology, such as nanoscale materials, nano digest

    Molecular Nanotechnology-NANOTECHNOLOGY & IMPLEMENTATIONS | Nano Tv

    What are Nanoparticles?, nano digest

    What are NANOPARTICLES?: Nano Tv

    THE ORIGIN & CHALLENGE by Richard Feynman | Nano Tv

    THE ORIGIN & CHALLENGE by Richard Feynman: Nano Tv

    Introduction, NANOTECHNOLOGY, nano digest, Nano Tv

    Introduction to NANOTECHNOLOGY | Nano Tv

  • ShopSale
No Result
View All Result
Nanodigest
No Result
View All Result
Home Material Science & Technology

Wrinkles in Atomically Thin Materials Unlock Ultra efficient Electronics

by Nano Digest
August 26, 2025
in Material Science & Technology
0
Wrinkles in atomically thin materials unlock ultra efficient electronics

Representation of electron spins in a bent 2D material exhibiting the persistent spin helix structure. Courtesy: Image courtesy of Sunny Gupta/Rice University.

491
SHARES
1.4k
VIEWS
Share on FacebookShare on TwitterShare on Whatsapp

Wrinkles in atomically thin materials unlock ultra efficient electronics
By Silvia Cernea Clark

Wrinkles can be an asset — especially for next-generation electronics. Rice University scientists have discovered that tiny creases in two-dimensional materials can control electrons’ spin with record precision, opening the path to ultracompact, energy-efficient electronic devices.

If most devices today use the charge of electrons flowing through silicon to process and encode information, future computing may instead harness spin — a quantum property of electrons that takes on either an “up” or “down” value. Computing with spin could overcome the limitations of current silicon-based technology, reducing the energy footprint of devices and data centers at a moment when computing-driven energy use is soaring globally.

However, spintronics has to contend with a major challenge: Information encoded in spin is quick to decay and can be lost when the electrons in a material scatter and collide with atoms.

In a new study published in the journal Matter, Rice materials scientists have reported that bending atomically thin layers of materials like molybdenum ditelluride gives rise to a unique spin texture called persistent spin helix, or PSH, which can preserve spin state even in scattering collisions.

“In typical materials, spin is tied to electron momentum, so changing direction alters spin, whereas in materials with PSH states, spin state remains fixed,” said Sunny Gupta, a Rice alumnus and postdoctoral associate who is a first author on the study. “Very few materials in nature can host PSH, making it rare and, until now, hard to fabricate.”

The research team led by materials scientist Boris Yakobson hypothesized that wrinkles in 2D materials could be a way to control electron spin states: When a 2D material is bent, the top side of the sheet stretches while the bottom side gets compressed. This uneven strain causes positive and negative charges to shift slightly relative to one another, producing an internal electric field ⎯ a phenomenon known as flexoelectric polarization.

Wrinkles in atomically thin materials unlock ultra efficient electronics
Manoj Mattur and Boris Yakobson Courtesy: Photo by Jorge Vidal/Rice University.

Electron spins in a bent 2D material interact with the flexoelectric effect created by the curvature of the sheet, which causes spin-up and spin-down electrons to split into distinct bands or regions. The higher the curvature, the stronger this interaction is. At its highest, the curved regions produce such a strong effect that the electrons’ spins exhibit the desired helix shape and flip between “up” and “down” states while passing only about 1 nanometer.

“Undulations are common in 2D materials, appearing as wrinkles or self-sustained hairpin like loops when folded — creating regions with extremely high curvature,” Gupta said. “We demonstrate that in such hairpin folds in molybdenum ditelluride, PSH states can achieve a spin-precession length of about 1 nanometer — the shortest reported to date.”

A short precession length means spintronic devices can be that much more compact.

“This work establishes controlled bending of 2D materials as a strategy for engineering distinct and exotic field profiles,” said Yakobson, Rice’s Karl F. Hasselmann Professor of Materials Science and Nanoengineering and the corresponding author on the study. “A humble ‘mechanical pinch,’ which occurs easily in 2D materials, splits the spins and induces PSH texture.”

Gupta noted that the starting premise of the investigation was somewhat counterintuitive, since “quantum behaviors and elastic mechanics are two different areas of physics that rarely intersect.”

“Here we showed that not only do macroscopic changes in the geometry or shape of 2D materials have an impact on the deep quantum-relativistic interaction between electron spin and nuclei, but also that this effect can be harnessed to create exotic spin textures for novel spintronics,” he said.

Source: Rice University

Tags: 2D materialsditellurideelectronicselectronsflexoelectricmolybdenumnext-generationpolarizationPSHspinspin helixspintronics
Share196Tweet123Send
Nano Digest

Nano Digest

  • Trending
  • Comments
  • Latest

Nanotechnology in Cancer

September 10, 2020
Emergence of 2.5D Materials for Futuristic Applications

Emergence of 2.5D Materials for Futuristic Applications

June 29, 2022
New research methods developed for nano and quantum materials. Nano Digest.

New research methods developed for nano and quantum materials

February 24, 2023
Designing Gas detecting devices using nanomaterials. Nano Digest.

Designing Gas detecting devices using nanomaterials

2
3D Printing Allows Precise Light Control for Color Composition. nano Digest.

3D Printing Allows Precise Light Control for Color Composition

2

Wearable sensor monitors health, administers drugs using saliva and tears

1
Students develop novel multi-metal 3D printing process.

Students develop novel multi-metal 3D printing process

September 4, 2025
Geometry revealed at the heart of quantum matter 

Geometry revealed at the heart of quantum matter

September 2, 2025
Wrinkles in atomically thin materials unlock ultra efficient electronics

Wrinkles in Atomically Thin Materials Unlock Ultra efficient Electronics

August 26, 2025
Nanodigest

Copyright © 2009-2022 NanoDigest.in

Navigate Site

  • About
  • Advertise
  • Privacy Policy
  • Terms & Conditions
  • Contact

Follow Us

No Result
View All Result
  • Home
  • Biological Science & Technology
  • Chemical Science & Technology
  • Material Science & Technology
  • Physical Science & Technology
  • Innovations & Education
  • NanoDigest Exclusive
  • Nano Tv
  • —————————–
  • About
  • Advertise
  • Contact
  • Privacy Policy
  • Terms & Conditions

Copyright © 2009-2022 NanoDigest.in

Welcome Back!

Sign In with Google
OR

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Sign Up with Google
OR

Fill the forms below to register

*By registering into our website, you agree to the Terms & Conditions and Privacy Policy.
All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Cookie SettingsAccept All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.