• Latest
  • Trending
  • All
Stabilising fleeting quantum states with light

Stabilising fleeting quantum states with light

June 9, 2025
A building material that lives and stores carbon

A building material that lives and stores carbon

June 20, 2025
Researchers crack the code of body’s ancient immune defense.

Researchers crack the code of body’s ancient immune defense

June 19, 2025
Nanofibers yield stronger, tougher carbon fiber composites

Nanofibers yield stronger, tougher carbon fiber composites

June 18, 2025
The New Method for Formation of Chemical Bonds

The New Method for Formation of Chemical Bonds

June 18, 2025
Nanoneedles patch for painless Cancer Biopsies

Nanoneedles patch for painless Cancer Biopsies

June 17, 2025
Practising medicine on a lifelike silicone model

Practising medicine on a lifelike silicone model

June 16, 2025
New Printable, Injectable Materials for Advanced Medical Applications

New Printable, Injectable Materials for Advanced Medical Applications

May 29, 2025
Metal fleece: material for the batteries of the future

Metal fleece: material for the batteries of the future

May 24, 2025
AI and X-ray Vision to Gain Insight into Battery Electrolyte.

AI and X-ray Vision to Gain Insight into Battery Electrolyte

May 23, 2025
Mask users can now breathe easy on two counts

Mask users can now breathe easy on two counts

May 23, 2025
Boosting Cancer Treatment.

Boosting Cancer Treatment

May 23, 2025
Emergence Quantum: a commercial quantum research 'special ops' team

Emergence Quantum: a commercial quantum research ‘special ops’ team

May 22, 2025
  • About
  • Advertise
  • Privacy Policy
  • Terms & Conditions
  • Contact
Monday, June 23, 2025
  • Login
  • Register
Nanodigest
  • Home
  • Categories
    • Biological Science & Technology
    • Chemical Science & Technology
    • Material Science & Technology
    • Physical Science & Technology
    • Innovations & Education
  • NanoDigestExclusive
    AI and X-ray Vision to Gain Insight into Battery Electrolyte.

    AI and X-ray Vision to Gain Insight into Battery Electrolyte

    Emergence Quantum: a commercial quantum research 'special ops' team

    Emergence Quantum: a commercial quantum research ‘special ops’ team

    Couple satisfaction linked to fewer cognitive issues with chemo

    Ultrasound and Cilia to Clean Implanted Stents and Catheters

    Ultrasound and Cilia to Clean Implanted Stents and Catheters

    Celebrating Science

    Nobel prize for a New Way in Cancer Treatment

    Nobel prize for New Way in Cancer Treatment

    Simple to use device. Nano Digest.

    Simple to Use Device

    Nanofoam: Breakthrough in Material Design. Nano Digest.

    Nanofoam: Breakthrough in Material Design

    The Future of Solar Energy. Nano Digest.

    The Future of Solar Energy

    Trending Tags

    • 2D nanospace
    • 3D nano structures
    • Bacterial magnetic nanoparticle
    • Creation of nano technology
    • nano particles
    • Nano Technology
    • Nano Tv
    • nanomaterials
    • nanoparticles
    • Nanosciences
    • nanotubes
    • Nanowire
  • Nano TvYouTube
    Nanotechnology in Engineering – NANOENGINEERING | Nano Tv

    Nanotechnology in Engineering – NANOENGINEERING | Nano Tv

    nanotechnology, materials, graphene, nano digest, NanoTV

    Nanotechnology in Materials – GRAPHENE | Nano Tv

    Nanotechnology in Electronics - NANOELECTRONICS | Nano Tv, Nano Digest

    Nanotechnology in Electronics-NANOELECTRONICS | Nano Tv

    Nanotechnology in Medicine - NANOMEDICINE, Nano Tv, nano digest

    Nanotechnology in Medicine-NANOMEDICINE | Nano Tv

    Molecular Nanotechnology-NANOTECHNOLOGY & IMPLEMENTATIONS | Nano Tv, It deals with engineering nanoscale machines that operate on the molecular scale distinct from other areas of nanotechnology, such as nanoscale materials, nano digest

    Molecular Nanotechnology-NANOTECHNOLOGY & IMPLEMENTATIONS | Nano Tv

    What are Nanoparticles?, nano digest

    What are NANOPARTICLES?: Nano Tv

    THE ORIGIN & CHALLENGE by Richard Feynman | Nano Tv

    THE ORIGIN & CHALLENGE by Richard Feynman: Nano Tv

    Introduction, NANOTECHNOLOGY, nano digest, Nano Tv

    Introduction to NANOTECHNOLOGY | Nano Tv

  • ShopSale
No Result
View All Result
Nanodigest
No Result
View All Result
Home Material Science & Technology

Stabilising fleeting quantum states with light

by Nano Digest
June 9, 2025
in Material Science & Technology
0
Stabilising fleeting quantum states with light

Laser pulses trigger electronic changes in a cuprate ladder, creating long-lived quantum states that persist for about a thousand times longer than usual. (Brad Baxley/Part to Whole). Courtesy: Paul Scherrer Institute.

491
SHARES
1.4k
VIEWS
Share on FacebookShare on TwitterShare on Whatsapp

Stabilising fleeting quantum states with light

Quantum materials exhibit remarkable emergent properties when they are excited by external sources. However, these excited states decay rapidly once the excitation is removed, limiting their practical applications. A team of researchers from Harvard University and the Paul Scherrer Institute PSI have now demonstrated an approach to stabilise these fleeting states and probe their quantum behaviour using bright X-ray flashes from the X-ray free electron laser SwissFEL at PSI. The findings are published in the journal Nature Materials.

Some materials exhibit fascinating quantum properties that can lead to transformative technologies, from lossless electronics to high-capacity batteries. However, when these materials are in their natural state, these properties remain hidden, and scientists need to gently ask for them to pop up. One way they can do this is by using ultrashort pulses of light to alter the microscopic structure and electronic interactions in these materials so that these functional properties emerge. But good things do not last forever – these light-induced states are transient, typically persisting only a few picoseconds, making them difficult to harness in practical applications. In rare cases, light-induced states become long-lived. Yet our understanding of these phenomena remains limited, and no general framework exists for designing excited states that last.

A team of scientists from Harvard University together with PSI colleagues overcame this challenge by manipulating the symmetry of electronic states in a copper oxide compound. Using the X-ray free electron laser SwissFEL at PSI, they demonstrated that tailored optical excitation can induce a ‘metastable’ non-equilibrium electronic state persisting for several nanoseconds – about a thousand times longer than they usually last for.

Steering electrons with light

The compound under study, Sr14Cu24O41 – a so-called cuprate ladder – is nearly one-dimensional. It is composed of two distinct structural units, the ladders and chains, representing the shape in which copper and oxygen atoms organise. This one-dimensional structure offers a simplified platform to understand complex physical phenomena that also show up in higher-dimensional systems. “This material is like our fruit fly. It is the idealised platform that we can use to study general quantum phenomena,” comments experimental condensed matter physicist Matteo Mitrano from Harvard University, who lead the study.

One way to achieve a long-lived (‘metastable’) non-equilibrium state is to trap it in an energy well from which it does not have enough energy to escape. However, this technique risks inducing structural phase transitions that change the material’s molecular arrangement, and that is something Mitrano and his team wanted to avoid. “We wanted to figure out whether there was another way to lock the material in a non-equilibrium state through purely electronic methods,” explains Mitrano. For that reason, an alternative approach was proposed.

In this compound, the chain units hold a high density of electronic charge, while the ladders are relatively empty. At equilibrium, the symmetry of the electronic states prevents any movement of charges between the two units. A precisely engineered laser pulse breaks this symmetry, allowing charges to quantum tunnel from the chains to the ladders. “It’s like switching on and off a valve,” explains Mitrano. Once the laser excitation is turned off, the tunnel connecting ladders and chains shuts down, cutting off the communication between these two units and trapping the system in a new long-lived state for some time that allows scientists to measure its properties.

Cutting-edge fast X-ray probes

The ultra-bright femtosecond X-ray pulses generated at the SwissFEL allowed the ultrafast electronic processes governing the formation and subsequent stabilisation of the metastable state to be caught in action. Using a technique known as time-resolved Resonant Inelastic X-ray scattering (tr-RIXS) at the SwissFEL Furka endstation, researchers can gain unique insight into magnetic, electric, and orbital excitations – and their evolution over time – revealing properties that often remain hidden to other probes.

“We can specifically target those atoms that determine the physical properties of the system,” comments Elia Razzoli, group leader of the Furka endstation and responsible for the experimental setup.

This capability was key to dissecting the light-induced electronic motion that gave rise to the metastable state. “With this technique, we could observe how the electrons moved at their intrinsic ultrafast timescale and hence reveal electronic metastability,” adds Hari Padma, postdoctoral scholar at Harvard and lead author of the paper.

Stabilising fleeting quantum states with light
The time-resolved Resonant Inelastic X-ray scattering (tr-RIXS) set up at the Furka endstation at SwissFEL, where the ultrafast electronic processes governing the metastable state were probed. © Paul Scherrer Institute PSI/ Elia Razzoli. Courtesy: Paul Scherrer Institute.

The first of many more to come

tr-RIXS gives unique insight into energy and momentum dynamics of excited materials, opening new scientific opportunities for users of SwissFEL in studying quantum materials; indeed, these results come from the first experiment conducted by a user group at the new Furka endstation. It was the interest in the development of tr-RIXS at Furka that motivated the Harvard team to collaborate with scientists at PSI. “It’s a rare opportunity to get time on a machine where you can do these sorts of experiments,” comments Mitrano.

Since this initial pilot experiment, the Furka endstation has undergone upgrades to improve the RIXS energy resolution, and it is ready to study new types of individual and collective excitations, such as lattice excitations. “This experiment was very important to showcase the kind of experiments that we can carry out. The endstation and its instrumentation are already much better now, and we will keep improving it,” concludes Razzoli.

This work represents a major step forward in controlling quantum materials far from equilibrium, with broad implications for future technologies. By stabilising light-induced non-equilibrium states, the study opens new possibilities for designing materials with tuneable functionalities. This could enable ultrafast optoelectronic devices, including transducers that convert electrical signals to light and vice versa—key components for quantum communication and photonic computing. It also offers a pathway toward non-volatile information storage, where data is encoded in quantum states created and controlled by light.

Source: Paul Scherrer Institute

Tags: Electron LaserfemtosecondflashesHarvard UniversityMaterialsmetastablePaul Scherrer Institute PSIpicosecondsquantum materialsX-rayX-ray probes
Share196Tweet123Send
Nano Digest

Nano Digest

  • Trending
  • Comments
  • Latest

Nanotechnology in Cancer

September 10, 2020
Emergence of 2.5D Materials for Futuristic Applications

Emergence of 2.5D Materials for Futuristic Applications

June 29, 2022
New research methods developed for nano and quantum materials. Nano Digest.

New research methods developed for nano and quantum materials

February 24, 2023
Designing Gas detecting devices using nanomaterials. Nano Digest.

Designing Gas detecting devices using nanomaterials

2
3D Printing Allows Precise Light Control for Color Composition. nano Digest.

3D Printing Allows Precise Light Control for Color Composition

2

Wearable sensor monitors health, administers drugs using saliva and tears

1
A building material that lives and stores carbon

A building material that lives and stores carbon

June 20, 2025
Researchers crack the code of body’s ancient immune defense.

Researchers crack the code of body’s ancient immune defense

June 19, 2025
Nanofibers yield stronger, tougher carbon fiber composites

Nanofibers yield stronger, tougher carbon fiber composites

June 18, 2025
Nanodigest

Copyright © 2009-2022 NanoDigest.in

Navigate Site

  • About
  • Advertise
  • Privacy Policy
  • Terms & Conditions
  • Contact

Follow Us

No Result
View All Result
  • Home
  • Biological Science & Technology
  • Chemical Science & Technology
  • Material Science & Technology
  • Physical Science & Technology
  • Innovations & Education
  • NanoDigest Exclusive
  • Nano Tv
  • —————————–
  • About
  • Advertise
  • Contact
  • Privacy Policy
  • Terms & Conditions

Copyright © 2009-2022 NanoDigest.in

Welcome Back!

Sign In with Google
OR

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Sign Up with Google
OR

Fill the forms below to register

*By registering into our website, you agree to the Terms & Conditions and Privacy Policy.
All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Cookie SettingsAccept All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.