• Latest
  • Trending
  • All
Exploring materials at the atomic scale

Exploring materials at the atomic scale

February 21, 2026
Two chips to authenticate each other

Two chips to authenticate each other

February 21, 2026
Transistor-like membranes enhance ion separation

Transistor-like membranes enhance ion separation

February 20, 2026
Biomarker identifies the risk of liver cancer

Biomarker identifies the risk of liver cancer

February 19, 2026
Bacteria with a built-in compass.

Bacteria with a built-in compass

February 18, 2026

Fighting superbugs with nets and light switches

February 3, 2026
Reshaping gold leads to new electronic and optical properties

Reshaping gold leads to new electronic and optical properties

February 2, 2026

Using caffeine to edit gene expression

January 27, 2026
Students develop novel multi-metal 3D printing process.

Students develop novel multi-metal 3D printing process

September 4, 2025
Geometry revealed at the heart of quantum matter 

Geometry revealed at the heart of quantum matter

September 2, 2025
Wrinkles in atomically thin materials unlock ultra efficient electronics

Wrinkles in Atomically Thin Materials Unlock Ultra efficient Electronics

August 26, 2025
Researchers track the motion of a single electron during a chemical reaction

Researchers track the motion of a single electron during a chemical reaction

August 21, 2025

New method produces ultra-thin membranes

August 20, 2025
  • About
  • Advertise
  • Privacy Policy
  • Terms & Conditions
  • Contact
Saturday, February 21, 2026
  • Login
  • Register
Nanodigest
  • Home
  • Categories
    • Biological Science & Technology
    • Chemical Science & Technology
    • Material Science & Technology
    • Physical Science & Technology
    • Innovations & Education
  • NanoDigestExclusive
    Two chips to authenticate each other

    Two chips to authenticate each other

    Students develop novel multi-metal 3D printing process.

    Students develop novel multi-metal 3D printing process

    Ultra-fast, in-line atomic force microscope (AFM),

    New Ultra-fast, in-line Atomic Force Microscope (AFM)

    Sydney scholar Richard Payne honoured.

    Sydney scholar Richard Payne honoured

    AI and X-ray Vision to Gain Insight into Battery Electrolyte.

    AI and X-ray Vision to Gain Insight into Battery Electrolyte

    Emergence Quantum: a commercial quantum research 'special ops' team

    Emergence Quantum: a commercial quantum research ‘special ops’ team

    Couple satisfaction linked to fewer cognitive issues with chemo

    Ultrasound and Cilia to Clean Implanted Stents and Catheters

    Ultrasound and Cilia to Clean Implanted Stents and Catheters

    Celebrating Science

    Trending Tags

    • 2D nanospace
    • 3D nano structures
    • Bacterial magnetic nanoparticle
    • Creation of nano technology
    • nano particles
    • Nano Technology
    • Nano Tv
    • nanomaterials
    • nanoparticles
    • Nanosciences
    • nanotubes
    • Nanowire
  • Nano TvYouTube
    Nanotechnology in Engineering – NANOENGINEERING | Nano Tv

    Nanotechnology in Engineering – NANOENGINEERING | Nano Tv

    nanotechnology, materials, graphene, nano digest, NanoTV

    Nanotechnology in Materials – GRAPHENE | Nano Tv

    Nanotechnology in Electronics - NANOELECTRONICS | Nano Tv, Nano Digest

    Nanotechnology in Electronics-NANOELECTRONICS | Nano Tv

    Nanotechnology in Medicine - NANOMEDICINE, Nano Tv, nano digest

    Nanotechnology in Medicine-NANOMEDICINE | Nano Tv

    Molecular Nanotechnology-NANOTECHNOLOGY & IMPLEMENTATIONS | Nano Tv, It deals with engineering nanoscale machines that operate on the molecular scale distinct from other areas of nanotechnology, such as nanoscale materials, nano digest

    Molecular Nanotechnology-NANOTECHNOLOGY & IMPLEMENTATIONS | Nano Tv

    What are Nanoparticles?, nano digest

    What are NANOPARTICLES?: Nano Tv

    THE ORIGIN & CHALLENGE by Richard Feynman | Nano Tv

    THE ORIGIN & CHALLENGE by Richard Feynman: Nano Tv

    Introduction, NANOTECHNOLOGY, nano digest, Nano Tv

    Introduction to NANOTECHNOLOGY | Nano Tv

  • ShopSale
No Result
View All Result
Nanodigest
No Result
View All Result
Home Material Science & Technology

Exploring materials at the atomic scale

by Nano Digest
February 21, 2026
in Material Science & Technology
0
Exploring materials at the atomic scale

A researcher uses the Bruker D8 Discover Plus within Characterization.nano’s X-ray diffraction and imaging shared experimental facility. Courtesy: Photo: Amanda Stoll DiCristofaro/MIT.nano.

491
SHARES
1.4k
VIEWS
Share on FacebookShare on TwitterShare on Whatsapp

Exploring materials at the atomic scale

Exploring materials at the atomic scale: The X-ray diffraction and imaging facility at MIT.nano adds a new tool to support research in a wide variety of disciplines.

MIT.nano has added a new X-ray diffraction (XRD) instrument to its characterization tool set, enhancing facility users’ ability to analyze materials at the nanoscale. While many XRD systems exist across MIT’s campus, this new instrument, the Bruker D8 Discover Plus, is unique in that it features a high-brilliance micro-focus copper X-ray source — ideal for measuring small areas of thin film samples using a large area detector.

The new system is positioned within Characterization.nano’s X-ray diffraction and imaging shared experimental facility (SEF), where advanced instrumentation allows researchers to “see inside” materials at very small scales. Here, scientists and engineers can examine surfaces, layers, and internal structures without damaging the material, and create detailed 3D images to map composition and organization. The information gathered is supporting materials research for applications ranging from electronics and energy storage to health care and nanotechnology.

“The Bruker instrument is an important addition to MIT.nano that will help researchers efficiently gain insights into their materials’ structure and properties,” says Charlie Settens, research specialist and operations manager in the Characterization.nano X-ray diffraction and imaging SEF. “It brings high-performance diffraction capabilities to our lab, supporting everything from routine phase identification to complex thin film microstructural analysis and high-temperature studies.”

What is X-ray diffraction?

When people think of X-rays, they often picture medical imaging, where dense structures like bones appear in contrast to soft tissue. X-ray diffraction takes that concept further, revealing the crystalline structure of materials by measuring the interference patterns that form when X-rays interact with atomic planes. These diffraction patterns provide detailed information about a material’s crystalline phase, grain size, grain orientation, defects, and other structural properties.

XRD is essential across many fields. Civil engineers use it to analyze the components of concrete mixtures and monitor material changes over time. Materials scientists engineer new microstructures and track how atomic arrangements shift with different element combinations. Electrical engineers study crystalline thin film deposition on substrates — critical for semiconductor manufacturing. MIT.nano’s new X-ray diffractometer will support all of these applications, and more.

“The addition of another high-resolution XRD will make it a lot easier to get time on these very popular tools,” says Fred Tutt, PhD student in the MIT Department of Materials Science and Engineering. “The wide variety of options on the new Bruker will also make it easier for myself and my group members to take some of the more atypical measurements that aren’t readily accessible with the current XRD tools.”

A closer, clearer look

Replacing two older systems, the Bruker D8 Discover Plus introduces the latest in X-ray diffraction technology to MIT.nano, along with several major upgrades for the Characterization.nano facility. One key feature is the high-brilliance microfocus copper X-ray source, capable of producing intense X-rays from a small spot size — ranging from 2mm down to 200 microns.

“It’s invaluable to have the flexibility to measure distinct regions of a sample with high flux and fine spatial resolution,” says Jordan Cox, MIT.nano research specialist in the MIT.nano X-ray diffraction and imaging facility.

Another highlight is in-plane XRD, a technique that enables surface diffraction studies of thin films with non-uniform grain orientations.

“In-plane XRD pairs well with many thin film projects that start in the fab,” says Settens. After researchers deposit thin film coatings in MIT.nano’s cleanroom, they can selectively measure the top 100 nanometers of the surface, he explains.

But it’s not just about collecting diffraction patterns. The new system includes a powerful software suite for advanced data analysis. Cox and Settens are now training users how to operate the diffractometer, as well as how to analyze and interpret the valuable structural data it provides.

Source: Massachusetts Institute of Technology (MIT)

Tags: 3Datomic-scaleBrukercrystallinemicrofocusmicrostructuralMITnanomaterialsnanoscaleX raysXRD
Share196Tweet123Send
Nano Digest

Nano Digest

  • Trending
  • Comments
  • Latest

Nanotechnology in Cancer

September 10, 2020
Emergence of 2.5D Materials for Futuristic Applications

Emergence of 2.5D Materials for Futuristic Applications

June 29, 2022
New research methods developed for nano and quantum materials. Nano Digest.

New research methods developed for nano and quantum materials

February 24, 2023
Designing Gas detecting devices using nanomaterials. Nano Digest.

Designing Gas detecting devices using nanomaterials

2
3D Printing Allows Precise Light Control for Color Composition. nano Digest.

3D Printing Allows Precise Light Control for Color Composition

2

Wearable sensor monitors health, administers drugs using saliva and tears

1
Two chips to authenticate each other

Two chips to authenticate each other

February 21, 2026
Exploring materials at the atomic scale

Exploring materials at the atomic scale

February 21, 2026
Transistor-like membranes enhance ion separation

Transistor-like membranes enhance ion separation

February 20, 2026
Nanodigest

Copyright © 2009-2022 NanoDigest.in

Navigate Site

  • About
  • Advertise
  • Privacy Policy
  • Terms & Conditions
  • Contact

Follow Us

No Result
View All Result
  • Home
  • Biological Science & Technology
  • Chemical Science & Technology
  • Material Science & Technology
  • Physical Science & Technology
  • Innovations & Education
  • NanoDigest Exclusive
  • Nano Tv
  • —————————–
  • About
  • Advertise
  • Contact
  • Privacy Policy
  • Terms & Conditions

Copyright © 2009-2022 NanoDigest.in

Welcome Back!

Sign In with Google
OR

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Sign Up with Google
OR

Fill the forms below to register

*By registering into our website, you agree to the Terms & Conditions and Privacy Policy.
All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Cookie SettingsAccept All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.